Основные определения коротких замыканий и причины их возникновения.
При работе станций, подстанций и сетей возможны ненормальные режимы их работы, приводящие к повреждениям и авариям. Большинство таких аварий происходит по причине возникновения коротких замыканий.
Коротким замыканием (к.з) называется всякое не предусмотренное нормальным режимом работы соединение токоведущих частей отдельных фаз между собой, а в установках с заземленной нейтралью — также и с землей или с нулевым проводом (в четырехпроводных системах). Замыкания между отдельными фазами или фазой и землей большей частью происходят из-за повреждений изоляции между токоведущими частями. В этих случаях ток проходит не через приемники электроэнергии, а более коротким путем — через место повреждения изоляции. Общее сопротивление цепи при этом резко снижается, а ток возрастает во много раз. Такие токи и называются токами короткого замыкания. Величина тока короткого замыкания не зависит от нагрузки, она обусловлена характеристикой генератора и сопротивлением участка цепи, на котором произошло короткое замыкание. Ввиду больших мощностей генераторов в системах, питающих сельские установки, и малого сопротивления короткозамкнутого контура, токи короткого замыкания могут достигать значительной величины и приводить к серьезным повреждениям. Они могут возникать и в нормальных режимах работы электроустановки, но при ошибочных действиях обслуживающего персонала, например, при включении цепи на неснятые за коротки, или при отключении нагрузки разъединителями и переброски возникшей дуги на соседние фазы. Об этом всегда следует помнить при производстве работ и выполнении оперативных переключений на станциях и подстанциях.
Основные причины возникновения токов короткого замыкания связаны с повреждением изоляции электроустановок. Они могут возникну и от действия различных перенапряжений, естественного изноет (старения) изоляции или ее дефектов, не обнаруженных до включения электроустановки под напряжение. При работе возле элементов установки могут возникнуть также непредвиденные механические повреждения изоляции; она может быть повреждена различными животными и птицами или в результате преднамеренных злоумышленных действий. Чаще всего повреждается изоляция сельских воздушных линий из за загрязнения изоляторов, растрескивания их под действием атмосферных осадков, температурных перепадов или перенапряжений. Появление микроскопических трещин в теле изоляторов и их последующий пробой может возникнуть также от постоянной механической нагрузки, которую испытывают изоляторы при вибрации и раскачивании проводов.
Все указанные причины приводят к возникновению короткого замыкания и, как их следствию, нежелательным аварийным отключениям или повреждениям элементов установки. Различают нарушения изоляции как между отдельными фазами, так и между фазами и землей. Повреждения междуфазовой изоляции и установках с изолированной и заземленной нейтралями всегда приводят к возникновению аварийных режимов короткого замыкания. То же происходит и при повреждениях изоляции фаз по отношению к земле при наличии заземленной нейтрали или фаз по отношению к нулевому проводу при наличии заземленного нулевого провода. При изолированной нейтрали замыкание одной из фаз на землю создает не аварийный, а лишь ненормальный режим работы установки.
Какие бывают виды
Короткое замыкание. Каждый слышал это словосочетание. Многие видели надпись «Не закорачивать!» Часто, когда ломается какой-нибудь электроприбор, говорят: «Коротнуло!» И несмотря на негативный оттенок этих слов, профессионалы знают, что короткое замыкание – не печальный приговор. Иногда с коротким замыканием (КЗ) бороться бессмысленно, а порой и принципиально невозможно. В этой статье будут даны ответы на самые важные вопросы: что такое короткое замыкание и какие виды КЗ встречаются в технике.
Будет интересно Что такое статическое электричество и как от него избавиться
Начнем рассматривать эти вопросы под необычным углом – узнаем, в каких случаях короткие замыкания неизбежны и где они не играют роль повреждений. Возьмем за оба конца обыкновенный металлический провод. Соединим концы вместе. Провод замкнулся накоротко – произошло КЗ. Но так как в цепи отсутствуют источники электрической энергии и нагрузка, такое короткое замыкание никакого вреда не несет. В некоторых областях электротехники КЗ, которое мы рассмотрели, играет на руку, например, в электрических аппаратах и электрических машинах.
Взглянем на однофазное реле или пускатель, в конструкции которых есть магнитная система с подвижными частями – электромагнит, притягивающий якорь. Из-за постоянно меняющейся полярности тока, текущего в обмотках электромагнита, его магнитный поток периодически становится равен нулю, что вызывает дребезжание якоря, появляются вибрации и характерное, знакомое всем электрикам гудение. Чтобы избавиться от этого явления, на торец сердечника электромагнита или якоря прикрепляют короткозамкнутый виток – кольцо или прямоугольник из меди или алюминия.
Из-за явления электромагнитной индукции в витке создается ток, создающий свой магнитный поток, компенсирующий пропадание основного магнитного потока, создаваемого электромагнитом, что приводит к уменьшению или исчезновению вибраций, разрушающих конструкцию.
Так же на руку играет короткое замыкание и в роторе асинхронного электродвигателя. Благодаря взаимодействию магнитного поля, создаваемого обмотками статора, с короткозамкнутым ротором, в роторе по уже упомянутому закону появляются свои токи, создающие свое поле, что приводит ротор во вращение
Конечно, важно грамотное проектирование электродвигателя или электрического аппарата, чтобы токи, протекающие в короткозамкнутых элементах, не приводили к перегреву и порче изоляции основных обмоток
Возгорание розетки
Подобным образом понятие «короткое замыкание» используется применительно к трансформаторам. Люди, так или иначе связанные с энергетикой, знают, что одна из важнейших характеристик трансформатора – это напряжение короткого замыкания, UКЗ, измеряемое в процентах. Возьмем трансформатор. Одну из его обмоток, скажем, низшего напряжения (НН) закоротим амперметром, сопротивление которого, как известно, принимается равным нулю. Обмотку высшего напряжения (ВН) подключаем к источнику напряжения. Повышаем напряжение на обмотке ВН до тех пор, пока ток в обмотке НН не станет равным номинальному, фиксируем это напряжение.
Делим его на номинальное напряжение высшей стороны, умножаем на 100%, получаем UКЗ. Эта величина характеризует потери мощности в трансформаторе и его сопротивление, от которого зависит ток короткого замыкания, ведущий к повреждениям. Поговорим наконец о коротких замыканиях, несущих негативные последствия. Такие короткие замыкания появляются, когда ток от источника питания протекает не через нагрузку, а только через провода, обладающие ничтожно маленьким сопротивлением. Например, трехфазный кабель питается от трансформатора, и одним неосторожным движением ковша экскаватора происходит его повреждение – две фазы закорачиваются через ковш. Такое КЗ называют двухфазным. Аналогично по количеству замкнутых фаз называют другие КЗ.
Однофазное замыкание на землю в сетях с изолированной нейтралью не является коротким, но может представлять угрозу жизни живых существ. Металлическим называют КЗ, в котором переходное сопротивление равно нулю – например, при болтовом или сварочном соединении. Токи КЗ в зависимости от напряжения и вида повреждения могут достигать тысяч и сотен тысяч ампер, приводить к пожарам и колоссальным электродинамическим усилиям, «выворачивающим» шины и провода. Защита от КЗ может осуществляться автоматическими выключателями или предохранителями, а в высоковольтных сетях – средствами релейной защиты и автоматики.
Защита блока питания от короткого замыкания.
Короткое замыкание
При работе реальной электрической цепи иногда происходит так, что указанные условия не выполняются. В этом случае говорят о режиме короткого замыкания.
Короткое замыкание означает, что в цепи возникает непосредственное соединение точек с разными (в нормальных условиях) потенциалами. Либо сопротивление цепи оказывается меньше внутреннего сопротивления источника питания.
Какие особенности имеет режим короткого замыкания?
Во-первых, замыкание двух точек цепи означает, что в таком режиме обе точки имеют один и тот же потенциал. Следовательно, по закону Ома на всём участке цепи между этими точками сила тока принимает нулевое значение.
Получается, что весь этот участок цепи «исчезает» и прекращает работу. Такая ситуация в абсолютном большинстве случаев является аварийной для цепи.
Во-вторых, если при коротком замыкании сопротивление цепи оказывается меньше внутреннего сопротивления источника (которое также очень невелико), это приводит к резкому возрастанию потребляемого тока до очень больших значений.
В самом деле, закон Ома для полной цепи гласит:
$$I={mathscr{E}over R+r}$$
В обычных условиях в этой формуле величина $r$ очень мала и составляет доли ома. Если сопротивление цепи $R$ становится ещё меньше, то ток через цепь $I$ многократно увеличится. Для идеального источника ЭДС $r rightarrow 0$, и при коротком замыкании $Rrightarrow 0$, следовательно, $I rightarrow ∞$, ток короткого замыкания стремится к бесконечности.
При этом вся максимальная мощность источника ЭДС начинает выделяться на малом сопротивлении проводника, создавшего короткое замыкание, и на внутреннем сопротивлении источника, а это может привести к пожару.
Рис. 2. Искра короткого замыкания
Токи обратной последовательности это
Ток нулевой последовательности это: Сумма мгновенных значений токов трех фаз трехфазной системы Система нулевой последовательности существенно отличается от прямой иобратной тем, что отсутствует сдвиг фаз. Нулевая система токов по существу представляет три однофазныхтока, для которых три провода трехфазной цепи представляют прямой провод, а обратным проводом служитземля или четвертый (нулевой), по которому ток возвращается.
Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное илидвухфазноеКЗ). Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Ток обратной последовательности, как известно из , появляется при любом несимметричном, а кратковременно и при трехфазном КЗ. Ток нулевой последовательности используется для повышения чувствительности пуска ВЧ-передатчика при КЗ на землю, а пусковое реле фазного тока КА — при симметричных КЗ
Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА
равен геометрической сумме токов трех фаз:
Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0
Зёх фазный ток — это когда фазы а,в,с отстоют друг от друга на 120градусов. Когда три фазы повёрнуты в 1 сторону — ток нулевой последовательности. Такое возникает при однофазных замыканиях на землю в сетях с заземлённой нейтралью. Поэтому применяются ТЗНП — токовые защиты нулевой последовательности для защиты от замыканий на землю — появился ток нулевой последовательности, значит есть замыкание на землю, защита срабатывает. . Токи обратной последовательности — это когда нарушен порядок чередования фаз. Возникают при межфазных замыканиях, для зашиты применяю ТЗОП — токовые защиты обратной последовательности. В двух словах так. Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное или двухфазное КЗ).
Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Токи нулевой последовательности по существу являются однофазным током, разветвленным между тремя фазами и возвращающимся через землю и параллельные ей цепи. В силу этого, путь циркуляции токов нулевой последовательности
резко отличен от пути, по которому проходят токи прямой или обратной последовательности Для практической реализации метода симметричных составляющих необходимо составлять три схемы замещения: прямой, обратной и нулевой последовательностей. Конфигурация этих схем и параметры их элементов в общем случае не одинаковы.
Схема прямой последовательности является той же, что и для расчета тока трехфазного замыкания. Из этой схемы находят результирующую ЭДС и результирующее сопротивление прямой последовательности: и . Началом этой схемы являются точки нулевого потенциала источников питания, концом – место короткого замыкания, к которой приложено напряжение прямой последовательности . Составляющие обратной последовательности возникают при появлении в сети любой несимметрии: однофазного или двухфазного короткого замыкания, обрыва фазы, несимметрии нагрузки.
Составляющие нулевой последовательности имеют место при замыканиях на землю (одно- и двухфазных) или при обрыве одной или двух фаз. В случае междуфазного замыкания составляющие нулевой последовательности(токи и напряжения) равны нулю.
Этот метод используют многие устройства РЗиА. В частности, принцип работы трансформатора тока нулевой последовательности основан на сложении значений тока во всех трех фазах защищаемого участка. В нормальном(симметричном) режиме сумма значений фазных токов равна нулю. В случае возникновения однофазного замыкания, в сети появятся токи нулевой последовательности и сумма значений токов в трех фазах будет отлична от нуля, что зафиксирует измерительный прибор (например, амперметр), подключенный ко вторичной обмотке трансформатора тока нулевой последовательности.
Для трехфазных транспозированых ЛЭП результат этого преобразования — точная матрица собственных векторов (матрица модального преобразования) . Она одинакова как для тока, так и для напряжения.
Влияние теплового спада тока КЗ на время отключения
Если вы отключаете КЗ с большой выдержкой времени, то вы должны пересчитать токи с учетом увеличения сопротивления кабеля. Представьте, что будет, если отключать КЗ с выдержкой 5 с. Ток КЗ, к моменту отключения, может снизится в 1,5-2 раза.
Брать каталожные удельные активные сопротивления нельзя (они обычно даются при 20 С), иначе время отключения будет гораздо больше, чем вы определите по кривой расцепителя. Это может привести к повреждению кабеля, пожарам и другим неприятным последствиям. По крайней мере вы можете выйти за 5 с и нарушить ПУЭ 1.7.79, а ПУЭ нарушать нельзя.
Рис. 3. Влияние нагрева кабеля на время отключения тока КЗ
На Рисунке 3 видно, что если рассчитать ток КЗ по каталожным данным, то мы укладываемся в 5 с. Но это ошибка потому, что к моменту отключения этот ток будет гораздо ниже, а следовательно время может быть больше 5 с.
Стоит отметить, что стандартные модульные автоматы (характеристики В, С) имеют время отключения теплового расцепителя всегда больше 5 с и вопрос отпадает сам собой.
То же самое относится к термомагнитным расцепителям в автоматах в литом корпусе. Например, на Рис. 4 представлена характеристика расцепителя TM-D производства Шнайдер Электрик
Рис. 4. Характеристика расцепителя ТМ-D (из каталога Шнайдер Электрик)
Однако, некоторые характеристики модульных автоматов (например, характеристика D) имеют участок с временами отключения тепловой защитой менее 5 с. То же самое касается электронных расцепителей (например, Micrologic от Шнайдер Электрик), где настройка уставок выполняется очень гибко.
Рис. 5. Характеристика расцепителя Micrologic 5.2 (из каталога Шнайдер Электрик)
виды коротких замыканий , основные соотношения токов инапряжений
При трехфазном коротком замыкании токи и напряжения во всех трех фазах равны по величине не только в месте короткого замыкания, но и любой другой точке сети: ; .
При двухфазном коротком замыкании на здоровой фазе ток отсутствует, а в поврежденных фазах проходят токи, одинаковые по величине и противоположные по направлению: .
Напряжение между поврежденными фазами равно нулю, а фазные напряжения равны:
При двухфазном коротком замыкании на землю соотношения токов и напряжений имеют следующий вид: .
Для сетей с заземленной нейтралью этот вид короткого замыкания является более опасным по сравнению с двухфазным коротким замыканием из-за значительного уменьшения линейных напряжений в месте короткого замыкания.
При однофазном коротком замыкании соотношения токов и напряжений принимают следующий вид: . (Этот вид короткого замыкания справедлив только для сетей с заземленной нейтралью, также как и двухфазное короткое замыкание на землю.)
В электрических машинах возможны межвитковые короткие замыкания (замыкание витков обмотокротораилистатора, либо витков обмоток трансформаторов), а также замыкание обмотки на металлический корпус машины.
Короткое замыкание в любом из элементов СЭС может нарушить ее функционирование — у некоторых потребителей может упасть питающее напряжение, что приводит к повреждению оборудования; в трехфазных сетях при коротких замыканиях возникает несимметрия напряжений, нарушающая ее нормальное электроснабжение. В системообразующих сетях короткое замыкание способно вызвать тяжелые системные аварии .
Основные причины возникновения коротких замыканий
- Старение и, вследствие этого, пробой изоляции.
- Набросы на провода линий электропередачи ( ЛЭП ).
- Обрывы проводов ЛЭП с падением на землю.
- Механические повреждения изоляции кабельных ЛЭП при земляных работах.
- Удары молнии в ЛЭП.
Чаще всего КЗ происходит через переходное сопротивление (через сопротивление электрической. дуги, возникающей в месте повреждения изоляции). Иногда возникают металлические КЗ без переходного сопротивления.
Таблица 1
Вероятность возникновения повреждений вэлектрических сетях
Вид КЗ/повреждения | Вероятность возникновения |
Трехфазное — К(3) | 1–7 % |
Двухфазное — К(2) | 2–13 % |
Двухфазное на землю — К(1.1) | 5–20 % |
Однофазное — К(1) | 60–92 % |
Однофазное замыкание на землю — З(1) | 60–92 % |
Другие ненормальные режимы работы
В сетях, не имеющих непосредственного заземления нейтрали (изолированная, компенсированная или резистивно заземленная нейтраль) могут возникать только трехфазные и двухфазные короткие замыкания.
В упомянутых выше сетях (без заземления нейтрали) при электрическом контакте любой из трех фаз с землей возникают однофазные замыкания на землю (ОЗЗ), которые относятся к ненормальным режимам работы (не являются короткими), так как в режиме работы сети при однофазном замыкании на землю сеть (в классическом случае) не отключается устройствами релейной защиты и продолжает работать. В этом случае напряжения на здоровых фазах возрастают до линейных значений. Допустимые значения емкостных токов при однофазном замыкании на землю для сетей с различными классами напряжений приведены в таблице 2.
Таблица 2
Допустимые значения емкостного тока при однофазном замыкании на землю
Класс напряжения, кВ | Допустимое значение емкостного ток, А |
3–6 | 30 |
10 | 20 |
15–20 | 15 |
35 | 10 |
Генераторные цепи | 5 |
ЛЭП на ж/б опорах | 10 |
Именно этот режим работы в настоящее время вызывает живой интерес, так как на данный момент еще никому не удалось создать универсальную селективную защиту от однофазных замыканий на землю, поэтому актуальность и перспективность создания такой защиты не вызывает сомнений.
Кроме всего вышеперечисленного следует выделить режим перегрузки как одну из разновидностей ненормальных режимов работы. К ним относятся: перегрузка оборудования при превышении номинального значения тока, перегрузка оборудования при превышении номинального значения напряжения. При превышении номинального значения тока возникает повышенный износ изоляции, что приводит к ее повреждению. При превышении напряжения выше номинального значения уменьшается срок службы электрооборудования и увеличивается вероятность возникновения аварий.
В заключение приведем таблицу с режимами работ нейтралей СЭС и видами замыканий, которые могут возникнуть в каждом конкретном случае.
Таблица 3
Виды замыканий всистемах электроснабжения
Вид замыкания или повреждения | ||
Трехфазное — К(3) | + | + |
Двухфазное — К(2) | + | + |
Двухфазное на землю — К(1.1) | + | |
Однофазное — К(1) | + | |
Однофазное замыкание
на землю — З(1) |
+ |
Какие могут быть последствия?
Во время замыканий наблюдается резкое увеличение силы тока, что приводит к расплавлению металлов. «Брызги» могут разноситься во все стороны, приводя к воспламенению предметов вокруг и пожарам. Это особенно опасно для домашних условий, так как КЗ может стать причиной потери имущества и жилья. Последствиями на предприятиях является аварийная ситуация, повреждение техники и риск того, что могут пострадать люди.
Замыкание, в зависимости от места его образования, может привести к системой аварии, последствиями которой станет экономический и технический урон. Оборудование, которое находилось под действием усиленной силы тока, выходит из стоя или получает серьезные повреждения.
Еще одним последствием замыкания является ухудшение условий работы персонала и потребителей – резкое понижение давления приводит к остановке производственных мощностей и экономическому ущербу. Наибольший урон наносится тому месту, в котором непосредственно возникло замыкание.
Способы защиты
Наиболее надежным и действенным способом предотвращения КЗ является установка автоматических выключателей. Альтернативой служат плавкие предохранители. Автомат своевременно улавливает возникновение замыкания и отключает питание, благодаря чему возникновение аварийной ситуации является невозможным.
Прочие меры предосторожности:
- регулярная ревизия электропроводных каналов – визуальное определение слабых мест кабеля, где изнашивается изоляция и своевременное устранение проблемы;
- использование электрических реакторов, которые регулируют подачу тока;
- использование специальных электроцепей, которые в случае необходимости отключают секционные выключатели;
- использование понижающих трансформаторов, которые оснащены расщепляемой обмоткой низкого напряжения.
Совет: для домашнего использования рекомендуется устанавливать автоматические выключатели. Они рассчитаны на определенный ток, после превышения величины которого, разрывается цепь. Прочие меры в основном указаны для промышленного использования.
В чем заключается угроза КЗ?
Замыкание в первую очередь представляет угрозу здоровью и жизни человека. Это связано с пожарной опасностью: возгорание изоляции проводов, воспламенение окружающих предметов, способность изоляции распространять горение. Так же изменение силы тока может быть губительным для используемых устройств и приборов, приводя к катастрофическим последствиям
КЗ может стать причиной экономического убытка Поэтому важно использовать меры профилактики возникновения явления и прибегать к установке методов защиты
б) Общие условия испытания
При эксплуатационных или специальных электромагнитных испытаниях методом короткого замыкания эксперимент проводится после второй сборки трансформатора для определения безрезервуарного напряжения короткого замыкания и потерь или для измерения полей рассеяния в различных точках активной части трансформатора. Во время приемочных испытаний испытание на короткое замыкание проводится на собранном маслонаполненном трансформаторе. При квалификационных и периодических испытаниях на нагрев методом короткого замыкания трансформатор полностью собирается вместе с системой охлаждения (глава 12). Результаты измерения потерь и напряжения короткого замыкания практически не зависят от того, с какой стороны подводится питание. Поэтому для удобства при испытаниях двухобмоточных трансформаторов происходит короткое замыкание обмотки НН, и питание подается на обмотку ВН. Трехобмоточные трансформаторы Па, во время испытания на короткое замыкание пары обмоток VP и MV, напряжение подается на обмотку MV, когда обмотка HV замкнута накоротко. Перед испытанием на короткое замыкание необходимо убедиться в надежном коротком замыкании соответствующей обмотки, а также выводов всех вторичных обмоток трансформаторов тока, встроенных в трансформатор
Замыкание входов короткозамкнутой обмотки должно производиться с максимальной осторожностью, используя короткие медные провода или шины, сечение которых должно быть не меньше сечения штыря, по которому проходит ток, или входной шины этой обмотки. По мнению Л
1-3 при испытании каждого первого образца трансформаторов данного типа плотность тока в проводах питания и проводах, используемых для выполнения короткозамкнутых обмоток, при проведении экспериментов не должна быть более 1,8 медь и 1,2 А / мм2 из алюминия. Во время приемочных испытаний испытание на короткое замыкание проводится на ступени номинального напряжения, а во время квалификационных и периодических испытаний, кроме того, на ступенях максимального и минимального напряжения обмотки. Перед экспериментом переключатели ответвлений обмоток должны быть установлены на требуемую ступень, а их приводы должны быть заблокированы. Если приводы устройства, такие как выключатели, установлены неправильно, между подвижными и неподвижными контактами выключателя может образоваться небольшой зазор. Напряжение короткого замыкания во время эксперимента может быть достаточным для разрыва зазора между контактами, а образовавшаяся между ними электрическая дуга может вызвать повреждение (оплавление) контактов.
Видео о том, что такое короткое замыкание:
В электрике есть два вида неисправностей:
- Тока нет там, где он должен быть — это называется разрыв
- Ток есть там, где его быть не должно — это называется короткое замыкание.
Сегодня мы поговорим как раз о токе короткого замыкания. Любую электрическую цепс можно представить себе, как Источник тока и сопротивление нагрузки, по которой течет ток.
Ток в нормальной цепи без короткого замыкания
Однако, если появится какой-то проводящий элемент, который замкнет собой контур с входным напряжением, то картина будет следующей.
Схема цепи с коротким замыканием
В указанной цепи произошло короткое замыкание
На практике это может быть любая проволока или неосторожно засунутая отвертка, которая создала контур короткого замыкания. Особенность этой ситуации в том, что сопротивление этих проводов Rкз ничтожно мало по сравнению с сопротивлением нагрузки Rн
Что приводит к тому, что ток устремляется туда.
Опасность этого явления в том, что из-за очень низкого сопротивления, ток будет очень высоким. Рассмотрим конкретный пример — ваша Rн — это обычный фен мощностью 1 кВт. Т.е. при Действующем напряжении сети 220 В у него ток будет около 4 А и тогда мы можем понять, что наше Rн около 54 Ом.
Если же туда попадет провод, у которого сопротивление, скажем 0,054 Ом (вполне реальная цифра), то ток от 4 сразу может скакнуть до 4кА, а провод будет нагреваться уже в не в 1000, а 1000000 раз больше.
На практике это приводит к тому, что провод мгновенно нагревается до температуры плавления и перегорает. Однако, если он достаточно толстый, и расплавляется не очень быстро, то он может успечь поджечь горючие элементы, если они окажутся рядом.
В целом, это все, что вам необходимо знать про короткое замыкание )) Ниже теоретические выкладки, читать которые не обязательно.
В разговорной речи электриков это частно называется «коротнуло», «замкнуло», «закоротило» и т.д. На практике все эти слова означают, что произошло короткое замыкание электрической цепи. Т.е. проводники с разными потенциалами соединились и по сути произошла нештатная ситуация, при которой нормальное функционирование электрического устройства невозможно. В точке контакта происходит резкое падение сопротивления, что приводит к скачкообразному увеличению силы тока, которое влечет за собой тяжелые последствия.
Последствия замыкания
Растекание тока в сетях с изолированной нейтралью возможно лишь через провод, находящийся в прямом контакте с грунтом. Самый близкий пример такой ситуации – искусственный заземлитель.
Стекание тока
Аварийное замыкание фазы на грунт приводит к тому же эффекту, в результате которого происходит резкое уменьшение потенциала проводника относительно земли.
В указанной ситуации такой провод формально превращается в одиночный заземлитель.
Напряжение в точке контакта понижается до значения, соответствующего произведению протекающего через неё тока на величину сопротивления почвы его растеканию.
Это явление очень полезно с точки зрения уменьшения опасности при случайном повреждении линии. Одновременно с этим понижение потенциала фазы приводит к ряду нежелательных последствий.
Одно из негативных последствий – эффект распределения потенциала по поверхности земли вблизи от зоны контакта. Вследствие этого в точках, по-разному удалённых от заземляющей конструкции, появляются различные по величине потенциалы, образующие перепады напряжения, опасные для попавших в эту зону людей.
Это обстоятельство послужило причиной введения такого показателя, как «напряжение шага», определяемого разностью потенциалов между его ступнями при передвижении в границах опасной зоны.
В связи с тем, что снижение потенциала по мере удаления от точки контакта происходит по экспоненте – максимальное напряжение шага наблюдается вблизи от неё. Минимум этой величины проявляется на участках, достаточно удаленных от эпицентра аварии.
Характер распределения тока замыкания на землю, величина сопротивления растеканию и распределение потенциалов на опасном участке – все эти показатели зависят от геометрических параметров образовавшегося соединения. Существенное влияние на них оказывает и состояние грунта в момент аварии (повышенная влажность, сухость или другие факторы).
Возникновение дуги
Ещё одним последствием замыкания фазного проводника на землю является образование электрической дуги, в процессе горения которой выделяется большое количество тепла и наблюдается ионизация воздуха. Это создаёт условия, способствующие появлению в линейных межфазных цепях короткого замыкания.
Прерывистый характер дуги, образующейся при замыкании на землю, приводит к появлению значительных перенапряжений величиной до 3,2 Uф.. С целью снижения амплитуды ёмкостных токов, увеличения времени восстановления напряжения на аварийной фазе, а также ограничения перенапряжений при последующих зажиганиях дуги в цепях устанавливается специальный дугогасящий реактор.
Освобождение от действия электрического тока
При поражении электрическим током необходимо как можно скорее освободить пострадавшего от действия шока, т.к. от продолжительности этого действия зависит тяжесть электротравмы.
Прикосновение к токоведущим частям, находящимся под напряжением вызывает в большинстве случаев непроизвольное судорожное сокращение мышц и общее возбуждение, которое может привести к нарушению даже полному прекращению деятельности органов дыхания и кровообращения.
Если пострадавший держит провод руками, его пальцы так сильно сжимаются, что высвободить провод из его рук становится невозможно.
Поэтому первым действием, оказывающего помощь должно быть немедленное отключение той части электроустановки, которой касается пострадавший.
Отключение производится с помощью выключателя, рубильника, а также путем снятия или вывертывания предохранителей.
Если отключить установку достаточно быстро нельзя, необходимо принять иные меры к освобождению пострадавшего от действия тока.
Во всех случаях оказывающий помощь не должен прикасаться к пострадавшему без надлежащих мер предосторожности, т.к. это опасно для жизни
Он должен следить и за тем, чтобы самому не оказаться в контакте с токоведущей частью и под напряжением шага.
Напряжение до 1000В
Для отделения пострадавшего от токоведущих частей или провода напряжением до 1000В, следует воспользоваться канатом, палкой, доской или сухим предметом, не проводящим электрический ток.
Можно также оттянуть его за одежду (если она сухая и отстает от тела), например, за полу пиджака или пальто, за воротник, избегая при этом прикосновения к окружающим металлическим предметам и частям тела пострадавшего, не прикрытым одеждой. Оттаскивая пострадавшего за ноги, оказывающий помощь не должен касаться его обуви или одежды, т.к. обувь и одежда могут быть сырыми и являться проводниками электрического тока.
Для изоляции рук оказывающий помощь должен надеть диэлектрические перчатки или обмотать руку шарфом, надеть на нее суконную фуражку, накинуть на пострадавшего резиновый коврик или просто сухую материю. Можно также изолировать себя, встав на резиновый коврик, сухую доску или на не проводящую электрический ток подошву. При отделении пострадавшего от токоведущих частей рекомендуется действовать одной рукой, держа вторую в кармане или за спиной.
Если электрический ток проходит в землю через пострадавшего и он судорожно сжимает в руке один токоведущий элемент (например, провод, проще прервать ток, отделив пострадавшего от земли), подсунуть под него сухую доску, либо оттащить за одежду. Можно также перерубить провода топором с сухой деревянной рукояткой или перекусить их инструментом, с изолированными рукоятками (кусачками, пассатижами). Перекусывать провода необходимо пофазно, т.е. каждый провод в отдельности, при этом необходимо стоять на сухих досках, деревянной лестнице.
Напряжение свыше 1000В
Для отделения пострадавшего от токоведущих частей, находящихся под напряжением выше 1000В следует надеть диэлектрические перчатки и боты, действовать штангой или изолирующими концами, рассчитанными на соответствующее напряжение. При этом надо помнить об опасности напряжения шага, если токоведущая часть лежит на земле и после освобождения пострадавшего от действия тока необходимо вынести его из опасной зоны.
На линиях электропередачи для освобождения пострадавшего, если он касается проводов, следует произвести замыкание проводов накоротко, набросив на них гибкий неизолированный провод.
Провод должен иметь достаточное сечение, чтобы он не перегорел при прохождении через него тока короткого замыкания. Перед тем, как произвести наброс, один конец провода надо заземлить (присоединить его к телу металлической опоры, заземляющему спуску и др.). Набрасывать проводник надо так, чтобы он не коснулся людей, в том числе, оказывающего помощь и пострадавшего. Если пострадавший касается одного провода, то часто достаточно заземлить только этот провод.