Закон джоуля-ленца: определение, формулы

Практическое значение

Закон Ома для неоднородной области

Как правило, они работают с током. Именно этот параметр определяет плотность электронов в определенном сечении. Учитывая параметры материала (примеси), легко установить рабочие зависимости нагрева. Для расчета количества тепла в проводнике формула принимает следующий вид:

Q = а * I2 * R * t.

Если специальный коэффициент a = 1, единицей измерения является джоуль.

Для удобства используем значение производной a = 0,24. С этим значением поправочного коэффициента формула Ленца позволяет рассчитать тепловыделение в «малых калориях». Единственное количество необходимо, чтобы нагреть один грамм воды до одного градуса Цельсия.

Снижение потерь энергии

Формула, соответствующая закону Джоуля Ленца, объясняет реальный КПД линий электропередачи. При использовании соответствующих систем нагрев проводников полезной функции не выполняет. Этот процесс связан с затратами дополнительной энергии.

Для расчета можно рассмотреть формулу:

Rпр = Rпр * (Pn2 / Un2),

где это находится:

  • Рпр (Pн) – потребляемая мощность жилы (нагрузки);
  • Rпр – электрическое сопротивление;
  • Uн – напряжение в ЛЭП подключенного потребителя.

Электропроводность – это постоянный показатель, зависящий от материала и количества примесей. Температурную зависимость в большинстве случаев можно не заметить. По формуле потери можно снизить за счет увеличения напряжения в нагрузке. Однако этот метод связан с ухудшением общего уровня безопасности. Увеличение слоя утеплителя в сочетании с другими мерами увеличивает стоимость соответствующих изделий. С другой стороны, использование качественных материалов с высокой проводимостью сопровождается дополнительными затратами при создании ЛЭП.

Выбор проводов для цепей

Согласно действующим нормам кабельная продукция для передачи электроэнергии подбирается с учетом допустимого тепловыделения. Расчеты производятся по формулам, приведенным в публикации. Помимо длительного воздействия рассматривается возможность сохранения целостности проводников в аварийном режиме короткого замыкания.

Допустимые параметры кабеля при прокладке скрытой проводки.

Для упрощения выбора рекомендуемые значения для обычных алюминиевых (медных) жил утверждены специальными стандартами ПУЭ. На изображении показан пример скрытой проводки. Аналогичные допуски установлены для воздушных линий электропередачи. Кабельную продукцию рекомендуется приобретать с запасом, позволяющим избежать опасных ситуаций при подключении мощных дополнительных нагрузок.

Электронагревательные приборы

Если две лампы накаливания разной мощности соединить параллельно в цепь, можно визуально определить разницу в свечении. Подобным образом распределяется выделяющееся тепло. Такой же принцип используется при создании отопительных приборов. Функциональный блок «ТЭН» изготовлен из нихромовой проволоки или другого материала с высоким удельным сопротивлением. Именно эта местность отличается высокими температурами.

Индукция используется для дистанционного нагрева. Электромагнитный генератор наверху, связанный с катушкой, создает поле, которое генерирует токи в нижней части горшка. Это обеспечивает прямое повышение температуры нижней области.

Довожу до вашего сведения. В проводящей цепи при определенных условиях происходит самоиндукция. Это явление наблюдается при пропускании переменного тока, который изменяет магнитный поток и вызывает образование электродвижущей силы.

Плавкие предохранители

Во всех представленных ситуациях прохождение тока увеличивает температуру проводника. При увеличении силы термического воздействия до определенного уровня материал разрушается. Этот механизм используется для изготовления предохранителей. Расчет продуктов производится на основе рассмотренных формул. В этом случае решающим значением является время горения вставки.

Продукция данной категории выпускается в широком ассортименте. Отдельные классы сгруппированы по текущему и стандартному размеру. Применяется разделение по типу конструкции (вилка, нож). Критерии времени отклика устанавливаются в зависимости от напряжения.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

Из формулы также следует –  чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление  0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге –  подгорание с последующим пропаданием контакта.

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать  электрические цепи. В 1832 году  Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что  существует некая  зависимость между силой тока, электрическим сопротивлением  и температурой проводника.

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Популярные статьи  Какой поставить стабилизатор напряжения, если в квартире слабое напряжение сети?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился  спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена  были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося  раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Суть теплового закона

Тепловое действие тока

Упомянутые выше ученые (Джоуль Ленц) практически одновременно (1841-1842 гг.) установили зависимость нагрева от силы тока. Для наглядного эксперимента можно использовать следующий комплект:

  • проводник размещают в емкости с водой;
  • термометром будет измеряться изменение температуры жидкости при подключении цепи к источнику электропитания;
  • с помощью вольтметра и амперметра уточняют напряжение и ток в контрольных точках.

Закон джоуля-ленца: определение, формулы
Аналогичный опыт можно воспроизвести в емкости с раствором соли, который обладает определенной проводимостью

По закону Ома ток (I) можно определить через напряжение (U) и электрическое сопротивление (R):

I= U/R.

Выполняемую работу (A) записать следующим образом:

A = I * U * t = I * (I*R) * t = (U/R) * U * t = I2*R*t = (U2/R) * t.

Здесь t обозначает соответствующий интервал времени.

На этом этапе следует вспомнить первый закон термодинамики, который определяет сохранение энергии в замкнутой системе. Этот постулат позволяет описывать рассматриваемое явление с помощью созданной формулы. Подразумевается равенство количества тепла (Q) выполненной работе (A). Итоговое выражение (закон Ленца):

Q = I2*R*t = (U2/R) * t = I * U * t.

Суть явления объясняется столкновением заряженных частиц с молекулами проводника. Если образец – твердый материал, речь идет об электронах и компонентах кристаллической решетки, соответственно.

Как связаны свет и электричество?

Правильно лампочку называть лампой накаливания. Внутри в стеклянном корпусе расположена спираль из вольфрама. Электрический ток, проходя через эту спираль, раскаляет ее добела, и она начинает светиться. Вольфрам используется потому, что он обладает таким свойством – ярко светиться при нагревании. Металлическая нить сворачивается в спираль для того, чтобы увеличить длину нити, и, соответственно, количество получаемого света. Что касается устройства лампочки – разобрались. Все довольно просто. А вот почему вообще раскаляется спираль лампочки, и кто первым додумался это использовать?

Первые эксперименты с электричеством показали, что ток обладает тепловым действием. Он нагревает проводник, по которому идет. Величина нагревания зависит от вещества, из которого изготовлен проводник. Но какой-то нагрев происходит в любом случае. Обусловлено это тем, что отрицательно заряженные электроны, которые и представляют собой ток, при своем движении взаимодействуют с положительно заряженными ядрами кристаллической решетки, из которой состоит вещество проводника.

От этого взаимодействия уменьшается энергия электронов и увеличивается внутренняя энергия проводника. А от величины внутренней энергии и зависит температура вещества. Ток обладает еще магнитным и химическим действием. Если наш проводник неподвижен, и химического действия тока не происходит, то вся энергия, расходуемая током, идет на нагрев проводника. Энергия, израсходованная током, равна совершаемой током работе.

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии , понижая в результате силу тока. Однако, повышение напряжения снижает электробезопасность линий электропередачи .

Для применения высокого напряжения в цепи для сохранения прежней мощности на полезной нагрузке приходится увеличивать сопротивление нагрузки. Подводящие провода и нагрузка соединены последовательно . Сопротивление проводов () можно считать постоянным. А вот сопротивление нагрузки () растёт при выборе более высокого напряжения в сети. Также растёт соотношение сопротивления нагрузки и сопротивления проводов. При последовательном включении сопротивлений (провод — нагрузка — провод) распределение выделяемой мощности () пропорционально сопротивлению подключённых сопротивлений.

Ток в сети для всех сопротивлений постоянен. Следовательно, выполняются соотношение

И для в каждом конкретном случае являются константами. Следовательно, мощность, выделяемая на проводах, обратно пропорциональна сопротивлению нагрузки, то есть уменьшается с ростом напряжения, так как . Откуда следует, что . В каждом конкретном случае величина является константой, следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

Работа электрического тока. Закон Джоуля-Ленца

Каждый день мы пользуемся электрическими бытовыми приборами и не раз замечали, что во время работы они нагреваются независимо от того, включены ли они в сеть или питаются от аккумулятора. С чем это связано?

ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

Электрический ток, протекая по проводнику, вызывает его нагревание. Причина нагревания проводников электрическим током состоит в том, что свободные электроны в металлах (или ионы в растворах или расплавах электролитов), двигаясь под действием электрических сил, взаимодействуют с ионами (атомами) вещества проводника. В результате этого взаимодействия часть кинетической энергии движущихся электронов или ионов передаётся ионам кристаллической решётки. Это приводит к увеличению внутренней энергии проводника, т. е. увеличению его температуры. Энергию движущихся электрических зарядов принято называть энергией электрического тока или электрической энергией.

РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА

Электрические силы в проводнике совершают работу по переносу заряда. Напряжение на участке цепи есть не что иное, как отношение работы А электрических сил по переносу положительного заряда q к значению этого заряда: U = A/q

Популярные статьи  Почему не работает вентилятор в ванной, подключённый независимо через сдвоенный выключатель?

Зная напряжение между концами проводника и перемещённый заряд, можно записать эту работу как А = qU.

Значение перемещённого заряда q за время t можно получить, зная силу тока в цепи I: q = It.

Следовательно, А = Ult.

Работу электрического поля называют работой тока. Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого протекал ток. Работа электрического тока показывает, сколько электрической энергии превратилось в другие виды энергии.

Например, нагревание металлического проводника, поворот рамки с током — это примеры работы электрического тока, когда электрическая энергия превращается в другой вид энергии (внутреннюю, механическую и т. д.).

Единицей работы является джоуль (1 Дж). 1 Дж = 1 В • 1 А • 1 с.

Электрическая энергия, используемая потребителями тока, измеряется работой тока в этих потребителях. Для учёта совершённой работы служат счётчики — специальные устройства, сочетающие в себе три прибора: амперметр, вольтметр и часы.

Внутри счётчика имеется небольшой электродвигатель, диск которого начинает вращаться, если через счётчик проходит ток. При этом скорость вращения диска пропорциональна силе тока и напряжению. Количество оборотов диска подсчитывается счётным механизмом. Затраты электроэнергии в конечном счёте и определяются числом оборотов диска.

ЗАКОН ДЖОУЛЯ-ЛЕНЦА

Если на участке цепи, по которому протекает электрический ток, не совершается механическая работа и не происходят химические превращения вещества, то работа электрического тока приводит только к нагреванию проводника, т. е. при протекании тока по проводнику происходит превращение электрической энергии в тепловую. При этом по закону сохранения энергии количество теплоты Q, выделяемое проводником с током, будет равно работе электрического тока А:   Q = А.

Известно, что А = Ult, тогда и Q = Ult. Учитывая закон Ома U = IR, получаем Q = IRIt, или Q = PRt.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления и времени его протекания.

Этот закон был экспериментально установлен английским учёным Джеймсом Джоулем и независимо от него российским учёным Эмилием Ленцем, поэтому носит название закона Джоуля—Ленца.

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.

Закон джоуля-ленца: определение, формулы

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Где может пригодиться этот закон Джоуля-Ленца?

В электротехнике есть понятие длительно допустимого тока протекающего по проводам. Это такой ток, который провод способен выдержать длительное время (то есть, бесконечно долго), без разрушения провода (и изоляции, если она есть, потому что провод может быть и без изоляции). Конечно, данные вы теперь можете взять из ПУЭ (Правила устройства электроустановок), но получали эти данные исключительно на основе закона Джоуля-Ленца.

В электротехнике так же используются плавкие предохранители. Их основное качество – надёжность срабатывания. Для этого используется проводник определенного сечения. Зная температуру плавления такого проводника можно вычислить количество теплоты, которое необходимо, чтобы проводник расплавился от протекания через него больших значений тока, а вычислив ток, можно вычислить и сопротивление, которым такой проводник должен обладать. В общем, как вы уже поняли, применяя закон Джоуля-Ленца можно рассчитать сечение или сопротивление (величины взаимозависимы) проводника для плавкого предохранителя.

А ещё, помните, мы говорили про . Там на примере лампочки я рассказывал парадокс, что более мощная лампа в последовательном соединении светит слабее. И наверняка помните почему: падение напряжения на сопротивлении тем сильнее, чем меньше сопротивление. А поскольку мощность — это , а напряжение очень сильно падает, то и выходит, что большое сопротивление выделит большое количество тепла, то есть, току придется больше потрудиться, чтобы преодолеть большое сопротивление. И количество тепла, которое выделит ток при этом можно посчитать с помощью закона Джоуля-Ленца. Если брать последовательное соединение сопротивлений, то использовать лучше выражение через квадрат тока, то есть, изначальный вид формулы:

А для параллельного соединения сопротивлений, поскольку ток в параллельных ветвях зависит от сопротивления, в то время, как напряжение на каждой параллельной ветви одинаковое, то формулу лучше всего представить через напряжение:

Примерами работы закона Джоуля-Ленца вы все пользуетесь в повседневной жизни – в первую очередь это всевозможные нагревательные приборы. Как правило, в них используется нихромовая проволока и толщина (поперечное сечение) и длина проводника подбираются с учётом того, чтобы длительное тепловое воздействие не приводило к стремительному разрушению проволоки. Точно таким же образом добиваются свечения вольфрамовой нити в лампе накаливания. По этому же закону определяют степень возможного нагрева практически любого электротехнического и электронного устройства.

В общем, несмотря на кажущуюся простоту, закон Джоуля-Ленца играет в нашей жизни очень огромную роль. Этот закон дал большой толчок для теоретических расчётов: выделение тепла токами , вычисление конкретной температуры дуги, проводника и любого другого электропроводного материала, потери электрической мощности в тепловом эквиваленте и т.д.

Вы можете спросить, а как перевести Джоули в Ватты и это довольно частый вопрос в интернете. Хотя вопрос несколько неверный, читая далее, вы поймёте почему. Ответ довольно прост: 1 дж = 0.000278 Ватт*час, в то время, как 1 Ватт*час = 3600 Джоулей. Напомню, что в Ваттах измеряется потребляемая мгновенная мощность, то есть непосредственно используемая пока включена цепь. А Джоуль определяет работу электрического тока, то есть мощность тока за промежуток времени. Помните, в законе Ома я приводил аллегорическую ситуацию. Ток – деньги, напряжение – магазин, сопротивление – чувство меры и денег, мощность – количество продуктов, которые вы сможете на себе унести (увезти) за один раз, а вот как далеко, как быстро и сколько раз вы сможете их увезти – это работа. То есть, сравнить работу и мощность никак не получается, но можно выразить в более понятных нам единицам: Ваттах и часах.

Популярные статьи  Почему выбивает автомат на освещение после затопления?

Думаю, что теперь вам не составит труда применить закон Джоуля-Ленца в практике и теории, если таковое потребуется и даже сделать перевод Джоулей в Ватты и наоборот. А благодаря пониманию, что закон Джоуля-Ленца это произведение электрической мощности на время, вы сможете более легко его запомнить и даже, если вдруг забыли основную формулу, то помня всего лишь закон Ома можно снова получить закон Джоуля-Ленца. А я на этом с вами прощаюсь.

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Определения

В словесной формулировке звучит следующим образом:

Математически может быть выражен в следующей форме:

w=j→⋅E→=σE2,{\displaystyle w={\vec {j}}\cdot {\vec {E}}=\sigma E^{2},}

где w{\displaystyle w} — мощность выделения тепла в единице объёма, j→{\displaystyle {\vec {j}}} — плотность электрического тока, E→{\displaystyle {\vec {E}}} — напряжённость электрического поля, σ — проводимость среды, а точкой обозначено скалярное произведение.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах:

В интегральной форме этот закон имеет вид

dQ=I2Rdt,{\displaystyle dQ=I^{2}Rdt,}
Q=∫t1t2I2Rdt,{\displaystyle Q=\int \limits _{t_{1}}^{t_{2}}I^{2}Rdt,}

где dQ{\displaystyle dQ} — количество теплоты, выделяемое за промежуток времени dt{\displaystyle dt}, I{\displaystyle I} — сила тока, R{\displaystyle R} — сопротивление, Q{\displaystyle Q} — полное количество теплоты, выделенное за промежуток времени от t1{\displaystyle t_{1}} до t2{\displaystyle t_{2}}. В случае постоянных силы тока и сопротивления:

Q=I2Rt.{\displaystyle Q=I^{2}Rt.}

Применяя закон Ома, можно получить следующие эквивалентные формулы:

Q=U2tR =IUt.{\displaystyle Q=U^{2}t/R\ =IUt.}

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​\( R_1 \)​ в четыре раза меньше сопротивления резистора ​\( R_2 \)​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​\( R_1 \)​ в 3 раза больше сопротивления резистора ​\( R_2 \)​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​\( A_1 \)​ и ​\( A_2 \)​ в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \)​ и ​\( A_2 \) в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

ФОРМУЛЫ
1) ​\( \frac{q}{t} \)​
2) ​\( qU \)​
3) \( \frac{RS}{L} \)​
4) ​\( UI \)​
5) \( \frac{U}{I} \)​

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Оцените статью
( Пока оценок нет )
Добавить комментарий