Взаимодействие потенциалов
Элементарные микрочастицы, которые носят название электрических зарядов, создают в собственном окружении электромагнитный фон. Поле переносит силовые связи между отдельными частицами. Электростатическое поле контактирует с носителями заряда и представляет собой носитель информации в современных системах телевещания, радио.
Частицы взаимодействуют между собой и переносятся полем в пространственном континууме с определенной конечной скоростью. Электрический потенциал (заряд) является численной характеристикой в определенной области поля и принимает положительное или отрицательное значение. При этом величина силового действия между элементами, которое осуществляется зарядами, является прямо пропорциональной размеру потенциала. Определение направления силовых линий индукции, идущих со стороны электрического поля, зависит от знака действующего заряда.
Электрический потенциал определенной направленности присутствует в частице в течение всего времени ее существования. В результате происходит отождествление микроэлемента с его зарядом. Для характеристики используется система диполь, применяемая для описания поля или учета распространения колебаний электромагнитных линий вдали от нулевого источника с зарядом, разделенным в пространстве.
Потенциал любого проводника является кратным модулю элементарного заряда частицы. В природе создается одинаковое количество положительных и отрицательных электронов, при этом электрический потенциал молекул и атомов принимается равным нулю. Заряды ионов и катионов в каждом участке кристаллической решетки компенсируются между собой.
Возникновение изолированных систем с определенной полярностью связывается не с появлением новых потенциальных частиц, а с их разделением в некоторых условиях, например, при трении. Электростатическое поле возникает в случае неподвижности зарядов и является идеализированным понятием.
Электрическая емкость. Конденсатор
Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.
Обозначение – \( C \), единица измерения в СИ – фарад (Ф).
Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.
Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:
Формула для вычисления электроемкости:
где \( q \) – заряд проводника, \( \varphi \) – его потенциал.
Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.
Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.
Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.
Электроемкость конденсатора рассчитывается по формуле:
где \( q \) – модуль заряда одной из обкладок,
\( U \) – разность потенциалов между обкладками.
Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.
Плоский конденсатор представляет две параллельные пластины площадью \( S \), находящиеся на расстоянии \( d \) друг от друга.
Электроемкость плоского конденсатора:
где \( \varepsilon \) – диэлектрическая проницаемость вещества между обкладками,\( \varepsilon_0 \) – электрическая постоянная.
На электрической схеме конденсатор обозначается:
Виды конденсаторов:
- по типу диэлектрика – воздушный, бумажный и т. д.;
- по форме – плоский, цилиндрический, сферический;
- по электроемкости – постоянной и переменной емкости.
Конденсаторы можно соединять между собой.
Параллельное соединение конденсаторов
При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:
Общая емкость:
Последовательное соединение конденсаторов
При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.
Заряды конденсаторов при таком соединении равны:
Общее напряжение:
Величина, обратная общей емкости:
При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.
Важно!
Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости
Применение конденсаторов
Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.
Как изменяется длина вектора Е с расстоянием
Длина вектора напряженности с расстоянием быстро убывает. Об этом можно судить с помощью формулы, описывающей модуль данного вектора:
\
Расстояние r возводится в квадрат и расположено в знаменателе. Это значит, что если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза.
А если, например, расстояние увеличится в 3 раза, то напряженность уменьшится в 9 раз.
На рисунке 9 отражено изменение длины вектора напряженности
Обратите внимание на направление этого вектора и знак заряда:. Рис
9. Как напряженность зависит от расстояния до заряда, создавшего поле
Рис. 9. Как напряженность зависит от расстояния до заряда, создавшего поле
Мы можем выразить зависимость напряженности от расстояния с помощью знака пропорции:
\
Подобную зависимость на графике можно отразить такой кривой:
Рис. 10. Модуль вектора напряженности электрического поля быстро уменьшается с увеличением расстояния до заряда
Как видно из рисунка 10, увеличение расстояния до заряда в четыре раза вызывает ослабление напряженности его поля в шестнадцать раз.
Измерение
Напряжённость относят к векторным величинам, оказывающим силовое воздействие на заряженные частицы.
Существуют не только теоретические, но и практические способы для измерения напряжённости.
Если речь о произвольных – сначала берут тело, содержащее заряд. Это правило распространяется на любые электронные устройства.
Размеры тела должны быть меньше размеров другого тела, генерирующего заряд. Достаточно небольшого металлического шарика, у которого есть свой заряд. Заряд шарика измеряют электрометром, потом приспособление помещают внутрь. Динамометр уравновешивает силу, воздействующую на предмет. После этого можно снять показания с единицей измерения – Ньютонами.
В бытовых условиях
Значение напряжённости получают, разделив значение силы на величину заряда.
Измерить расстояние – первый шаг, когда определяют напряжённость в конкретной точке, удалённой от тела на какую-либо величину.
Полученную величину разделяют на расстояние, возведённое в квадрат. К полученному результату применяют специальный коэффициент. Его выражение такое: 9*10^9.
Отдельного изучения заслуживает ситуация с конденсаторами.
В данном случае первый этап – измерение напряжения между пластинами. Предполагается использование вольтметра. Потом определяются с расстоянием между этими пластинами. Единица измерения – метры. Получают результат, который и будет напряжённостью. Направлять её можно по-разному.
Вам это будет интересно Применение электрического трансформатора, его понятие и виды
Взаимодействие зарядов передается без участия вещества
Заряды будут притягиваться и отталкиваться не только в воздухе, но, даже в безвоздушном пространстве. В этом легко убедиться, если поместить заряженный электроскоп под колокол и откачать из-под колокола воздух. Полоски бумаги, имеющие одинаковые заряды, все так же, продолжат отталкиваться, независимо от того, в воздухе ли они находятся, либо в безвоздушном пространстве.
Рис. 2. Для передачи взаимного действия зарядов вещество не нужно, так как это взаимодействие передается не через вещество
Это значит, что передача взаимодействия зарядов происходит не через вещество.
Ученые из Англии – Майкл Фарадей и Джеймс Максвелл, долгое время изучали электрические заряды. Они выяснили, что заряды окружены особым видом материи, которую они назвали электрическим полем.
Электрическое поле. ЗАДАЧИ с решениями
Формулы, используемые на уроках по теме «Электрическое поле. ЗАДАЧИ» в 10-11 классах при подготовке к ЕГЭ.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача № 1.
Электрон движется без начальной скорости вдоль силовой линии однородного электрического поля напряженностью Е = 2 • 104 Н/Кл. Какой путь S он пролетит прежде, чем его скорость станет v = 100 км/с ? Среда — воздух. Модуль заряда электрона е = 1,6 • 10–19 Кл, его масса me = 9,1 • 10–31 кг.
Задача № 2.
Пылинка с зарядом q = 1 нКл неподвижно висит в однородном электрическом поле напряженностью Е = 2 • 104 Н/Кл, вектор напряженности которого направлен вверх (рис. 2-9). Найти массу пылинки т. Сколько избыточных электронов N содержит пылинка?
Задача № 3.
Заряженный шар диаметром D находится в равновесии в жидком диэлектрике плотностью р1 с диэлектрической проницаемостью ε (рис. 2-10). Найти поверхностную плотность зарядов на шаре σ, если плотность вещества шара р2. Напряженность электрического поля в диэлектрике Е, вектор напряженности направлен вверх.
Задача № 4.
На каком расстоянии г2 от точечного заряда напряженность электрического поля этого заряда в жидком диэлектрике с диэлектрической проницаемостью ε2 = 81 (вода) такая же, как на расстоянии r1 = 9 см от этого заряда в воздухе?
Задача № 5.
Электрон влетает в однородное электрическое поле со скоростью v, направленной перпендикулярно вектору напряженности Е (рис. 2-11). Под каким углом φ к линиям вектора напряженности будет направлен вектор его скорости через время t полета в поле? Чему будет равна работа сил поля А за это время? Чему будет равна кинетическая энергия электрона Wкчерез время t ? Напряженность поля Е. Масса электрона теи его заряд е известны.
Задача № 6.
Тонкая металлическая пластинка массой m падает вертикально вниз равноускоренно так, что ее плоскость остается горизонтальной. Падению пластинки противодействует сила сопротивления среды Fсоnp. Найти напряженность электрического поля Е, возникающего внутри пластинки вследствие инерции свободных электронов. Масса электрона me, его заряд е.
Задача № 7.
К бесконечной, вертикальной, равномерно заряженной плоскости прикреплена одним кондом невесомая нить, на другом конце которой находится одноименно с нитью заряженный шарик радиусом R = 0,5 см, несущий заряд q = 1 • 10–10 Кл. Плотность вещества шарика р = 2 • 103 кг/м3. Натяжение нити Fн = 4,9 • 10–2 Н. Какой угол а образует с плоскостью нить, на которой висит шарик (рис. 2-12)? Среда – воздух. Чему равна поверхностная плотность σ зарядов на плоскости?
Задача № 8.
Сфера радиусом R = 1 см равномерно заряжена. Поверхностная плотность зарядов на сфере σ = 10 нКл/см2. Найти напряженность Е1 электрического поля на расстоянии r1 = 10 см от центра сферы (рис. 2-13). Построить график зависимости напряженности Е от расстояния r в пределах от r = 0 до r1 = 10 см. Среда — воздух.
Задача № 9.
Заряды q1 = 20 нКл и q2 = 10 нКл расположены на расстоянии r = 10 см друг от друга. Найти напряженность электрического поля Е1, созданного этими зарядами в точке 1, расположенной на расстоянии r1 = 4 см от заряда q1 и напряженность Е2 в точке 2, расположенной на расстоянии г2 = 2 см от заряда q2 (рис. 2-15). Среда — вакуум.
Задача № 10.
Два одноименных точечных заряда q и 4q расположены на расстоянии r друг от друга. На каком расстоянии r1 от заряда q находится точка М, в которой напряженность поля этих зарядов Е = 0? На каком расстоянии r2 от заряда q находится такая точка, если эти заряды разноименные?
Задача № 11.
На расстоянии г = 3 см от поверхности шара радиусом R = 2 см находится точечный отрицательный заряд q = –2 нКл. Шар заряжен положительно с поверхностной плотностью зарядов σ = 2 нКл/м2. Найти напряженность поля Е, созданного заряженным шаром и точечным зарядом, в точке, расположенной на расстоянии r1 = 4 см от центра шара, и г2 = 3 см от заряда q. Среда — воздух.
Задача № 12.
В вершинах равностороннего треугольника со стороной а находятся заряды q, –q и q. Найти напряженность поля Е, созданного этими зарядами в центре треугольника. Среда — воздух.
(с) В учебных целях использованы цитаты из учебного пособия «Новый репетитор по физике для подготовки к ЕГЭ : задачи и методы их решения / И.Л. Касаткина; под ред. Т.В. Шкиль. — Ростов н /Д : Феникс».
Это конспект по теме «Электрическое поле. ЗАДАЧИ с решениями». Выберите дальнейшие действия:
- Вернуться к списку конспектов по Физике.
- Проверить свои знания по Физике.
Что называется напряженностью электрического поля
Напряженность поля в диэлектрике равняется векторной сумме напряженностей полей, которые создают свободные E 0 → и связанные E p → заряды:
Зачастую бывают случаи, когда диэлектрик изотропный. Тогда запись напряженности поля имеет вид:
E → = E 0 → ε , где ε обозначает относительную диэлектрическую проницаемость среды в рассматриваемой точке поля.
Отсюда следует, что по выражению E → = E 0 → ε имеется однородный изотропный диэлектрик с напряженностью электрического поля в ε меньше, чем в вакууме.
Напряженность электростатического поля системы точечных зарядов равняется:
E → = 1 4 π ε 0 ∑ i = 1 n q i ε r i 3 r i → .
В системе СГС напряженность поля точечного заряда в вакууме:
Дан равномерно распределенный заряд по четверти окружности радиуса R с линейной плотностью τ . Необходимо найти напряженность поля в точке А , являющейся центром окружности.
Решение
Произведем выделение на заряженной части окружности элементарного участка d l , который будет создавать элемент поля в точке А . Следует записать выражение для напряженности, то есть для d E → . Тогда формула примет вид:
d E → = d q R 3 R → R .
Проекция вектора d E → на ось О х составит:
d E x = d E cos φ = d q cos φ R 2 .
Произведем выражение d q через линейную плотность заряда τ :
d q = τ d l = τ · 2 πRdR .
Необходимо использовать d q = τ d l = τ · 2 πRdR для преобразования d E x = d E cos φ = d q cos φ R 2 :
d E x = 2 π R τ d R cos φ R 2 = 2 π τ d R cos φ R = τ cos φ d φ R ,
где 2 π d R = d φ .
Далее перейдем к нахождению полной проекции E x при помощи интегрирования d E x = 2 π R τ d R cos φ R 2 = 2 π τ d R cos φ R = τ cos φ d φ R ,
по d φ с изменением угла 0 ≤ φ ≤ 2 π .
E x = ∫ 0 2 π τ cos φ d φ R = τ R ∫ 0 2 π cos φ d φ = τ R sin φ 0 2 π = τ R .
Перейдем к проекции вектора напряженности на О у :
d E y = d E sin φ = τ R sin φ d φ .
Следует проинтегрировать с изменяющимся углом π 2 ≤ φ ≤ 0 :
E y ∫ π 2 0 τ R sin φ d φ = τ R ∫ π 2 0 sin φ d φ = — τ R cos φ π 2 0 = — τ R .
Произведем нахождение модуля вектора напряженности в точке А , применив теорему Пифагора:
E = E x 2 + E y 2 = τ R 2 + — τ R 2 = τ R 2 .
Ответ: E = τ R 2 .
Найти напряженность электростатического поля равномерно заряженной полусферы с радиусом R . Поверхностная плотность заряда равняется σ .
Решение
Следует выделить на поверхности заряженной сферы элементарный заряд d q , располагаемый на элементе площади d S . Запись, используя сферические координаты d S , равняется:
d S = R 2 sin θ d θ d φ ,
при 0 ≤ φ ≤ 2 π , 0 ≤ θ ≤ π 2 .
Элементарная напряженность поля точечного заряда в системе С И :
d E → = d q 4 π ε 0 R 3 R → R .
Необходимо спроецировать вектор напряженности на О х :
d E x = d q cos θ 4 π ε 0 R 2 .
Произведем выражение заряда через поверхностную плотность заряда:
Подставим d q = σ d S в d E x = d q cos θ 4 π ε 0 R 2 , используя d S = R 2 sin θ d θ d φ , проинтегрируем и запишем:
E x = σ R 2 4 π ε 0 R 2 ∫ 0 2 π d φ ∫ 0 π 2 cos θ sin θ d θ = σ 4 π ε 0 2 π · 1 2 = σ 4 ε 0 .
Отсюда следует, что E = E x .
Ответ: напряженность полусферы в центре равняется E = σ 4 ε 0 .
Определение параметров электрического поля
Зная величину внесенного в поле заряда q, можно рассчитать силу в каждом конкретном случае:
\(\overrightarrow{F} = q \times\overrightarrow{Е}\)
Согласно закону Кулона, напряженность поля вокруг неподвижного точечного заряда q описывается выражением:
\(\overrightarrow{Е} = k \times \frac{q}{r^{2}} \times \frac{\overrightarrow{r}}{r}\)
\(k\) равен \(\frac{1}{4\pi \epsilon_{0}}\)
\(\epsilon_{0}\) — электрическая постоянная, равная \(8,85\times 10^{-12}\) Ф/м.
Для вычисления напряженности всего поля нужно сложить напряженности полей отдельных зарядов, т. е. воспользоваться принципом суперпозиции:
\(\overrightarrow{Е} = \overrightarrow{Е_{1}} + \overrightarrow{Е_{2}}\)
Если во всех точках поля напряженность одинакова, оно считается однородным. Если она различается — неоднородным.
Поток вектора напряженности, применение теоремы Гаусса
Суть теоремы, сформулированной Карлом Фридрихом Гауссом, сводится к следующему: если представить, что заряды окружены замкнутой поверхностью S, тогда поток вектора напряженности электрического поля через элементарную площадку \(\triangle S\) можно записать как:
\(\triangle Ф = Е\cos\alpha\triangle S\)
\(\alpha\) здесь — угол между нормалью к площадке и \(\overrightarrow{Е}\).
Тогда поток через площадку \(S\) описывается формулой:
\(Ф = Е_{n}S\)
\(Е_{n}\) здесь — модуль нормальной составляющей поля \(\overrightarrow{Е}\), произведение вектора \(\overrightarrow{Е}\) на нормаль \(\overrightarrow{n}\) к данной площадке.
Определение
Поток векторного поля через поверхность — интеграл второго рода по поверхности S.
Теорема
Полный поток вектора электрического поля через произвольно выбранную замкнутую поверхность равняется сумме потоков от всех зарядов, распределенных внутри нее случайным образом, и пропорционален величине этого заряда:
\(Ф = \oint_S E \times dS = 4\pi Q = \frac{Q}{\epsilon_{0}}\)
Напряженность электрического поля
Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства. Электрическое поле обнаруживается по силам, действующим на электрический заряд. Можно утверждать, что мы знаем о поле все, что нужно, если будем знать силу, действующую на любой заряд в любой точке поля. Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.
Для изучения электрического поля будем использовать пробный заряд.
Под пробным зарядом будем понимать положительный точечный заряд, не изменяющий изучаемое электрическое поле.
Пусть электрическое поле создается точечным зарядом q. Если в это поле внести пробный заряд q1, то на него будет действовать сила \(~\vec F\).
Обратите внимание, что в данной теме мы используем два заряда: источник электрического поля q0 и пробный заряд q1. Электрическое поле действует только на пробный заряд q1 и не может действовать на свой источник, т.е
на заряд q0.
Согласно закону Кулона эта сила пропорциональна заряду q1:
Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд q1, к этому заряду в любой точке поля:
не зависит от помещенного заряда q1 и может рассматриваться как характеристика поля. Эту силовую характеристику поля называют напряженностью электрического поля.
Подобно силе, напряженность поля – векторная величина, ее обозначают буквой \(~\vec E\) .
Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду:
Сила, действующая на заряд q со стороны электрического поля, равна\ .
Если в точке А заряд q > 0, то векторы \(~\vec E_A\) и \(~\vec F_A\) направлены в одну и ту же сторону; при q < 0 эти векторы направлены в противоположные стороны.
От знака заряда q, на который действует поле, не зависит направление вектора \(~\vec E_A\), а зависит направление силы \(~\vec F_A\) (рис. 1, а, б).
В СИ напряженность выражается в ньютонах на кулон (Н/Кл).
Значение напряженности электрического поля, созданного:
- точечным зарядом q, на расстоянии r от заряда в точке C (рис. 2) равно
-
\(~E = k \cdot \dfrac{|q|}{r^2}\) . -
Рис. 2
-
- сферой радиуса R с зарядом q, на расстоянии l от центра сферы в точке C (рис. 3), равно
-
\(~E = k \cdot \dfrac{|q|}{l^2}\) , если l ≥ R; -
\(~E = 0\) , если l < R. -
Рис. 3
-
- заряженной бесконечной пластиной с поверхностной плотностью заряда σ, равно
-
\(~E = \dfrac{|\sigma|}{2 \varepsilon_0}\) , - где \(~\sigma = \dfrac{q}{S}\) , q – заряд плоскости, S – площадь плоскости.
-
Принцип суперпозиции полей
А чему будет равна напряженность в некоторой точке электрического поля, созданного несколькими зарядами q1, q2, q3, …?
Поместим в данную точку пробный заряд q. Пусть F1 — это сила, с которой заряд q1 действует на заряд q; F2 — это сила, с которой заряд q2 действует на заряд q и т.д. Из динамики вы знаете, что если на тело действует несколько сил, то результирующая сила равна геометрической сумме сил, т.е.
Разделим левую и правую часть уравнения на q :
Если учтем, что \(\dfrac{ \vec F}{q} = \vec E\), мы получим, так называемый, принцип суперпозиции полей
напряженность электрического поля, созданного несколькими зарядами q1, q2, q3, …, в некоторой точке пространства равна векторной сумме напряженностей \(\vec E_1 , \, \vec E_2 , \, \vec E_3\), … полей, создаваемых каждым из этих зарядов:
Благодаря принципу суперпозиции для нахождения напряженности поля системы точечных зарядов в любой точке достаточно знать выражение для напряженности поля точечного заряда. На рисунке 4, а, б показано, как геометрически определяется напряженность \(~\vec E\) поля, созданного двумя зарядами.
Для определения напряженности поля, создаваемого заряженным телом конечных размеров (не точечных зарядов), нужно поступать следующим образом. Мысленно разделить тело на маленькие элементы, каждый из которых можно считать точечным. Определить заряды всех этих элементов и найти напряженности полей, созданных всеми ими в заданной точке. После этого сложить геометрически напряженности от всех элементов тела и найти результирующую напряженность поля. Для тел сложной формы это трудная, но в принципе разрешимая задача. Для ее решения нужно знать, как заряд распределен на теле.
Вектор напряженности электрического поля
Уже давно установлено, что электрические заряды не оказывают прямого воздействия друг на друга. В пространстве, окружающем все заряженные тела, наблюдается действие электрического поля.
Таким образом, взаимодействие происходит между полями, находящимися вокруг зарядов. Каждое поле имеет определенную силу, с которой оно и воздействует на заряд.
Эта способность является основной характеристикой для всех электрических полей.
Определение параметров электрического поля
Исследование электрического поля, расположенного вокруг заряженного объекта, осуществляется с помощью, так называемого пробного заряда. Как правило, это точечный заряд, величина которого очень незначительна и не может каким-то образом, заметно повлиять на основной, исследуемый заряд.
Вектор напряженности – основная характеристика
Основной характеристикой напряженности служит вектор напряженности электрического поля. Таким образом, данная характеристика является векторной физической величиной.
В любой пространственной точке, вектор напряженности направлен в том же направлении, что и сила, оказывающая воздействие на положительный пробный заряд.
Неподвижные заряды, которые не изменяются с течением времени, обладают электростатическим электрическим полем.
В том случае, когда исследуется электрополе, созданное сразу несколькими заряженными телами, его общая сила будет состоять из геометрической суммы сил каждого заряженного тела, воздействующих на пробный заряд. Следовательно, вектор напряженности электрического поля состоит из общей суммы векторов напряженности всех полей, созданными отдельными зарядами в каждой точке.
Напряженность электрического поля: формула
Силовые линии электрического поля представляют собой его наглядное графическое изображение. Вектор напряженности в каждой точке направлен в сторону касательной, располагающейся в соотношении с силовыми линиями. Количество силовых линий пропорциональны модулю вектора напряженности электрического поля.
Куда направлен вектор Е
Обратим в очередной раз внимание на формулу:
\
Заряд q – скалярная величина. А сила F – векторная.
Воспользуемся математическими свойствами векторов: разделив вектор F на скаляр q, мы получим новый вектор E:
- его длина отличается от вектора F.
- направления векторов F и E совпадают (либо векторы F и E направлены в противоположные стороны).
Рис. 8. Направление вектора E выбирается от положительных зарядов и в сторону отрицательных зарядов
Примечание: Однонаправленные или противоположно направленные, то есть, параллельные векторы, называют коллинеарными. У них может отличаться длина.
Как обнаружить электрическое поле
Мы не чувствуем электрическое поле, так как у нас нет органов чувств, способных его обнаружить.
Но, используя нечто, что обладает чувствительностью к электрическому полю, можно убедиться, что поле, окружающее заряды, существует.
В качестве чувствительного элемента можно использовать любой электрический заряд. Потому, что любой заряд окружен своим собственным электрическим полем и, благодаря ему может чувствовать подобные поля, создаваемые другими зарядами. Такой заряд, используемый для обнаружения поля, физики называют пробным.
Рис. 5. Описание понятия пробного точечного заряда
Примечания:
- Некоторые живые существа могут чувствовать электрические поля, например, некоторые виды рыб.
- Электрическое поле можно обнаружить по его действию на заряды, а, так же, с помощью различных приборов.
- Поле заряда действует с некоторой силой на расположенный рядом другой заряд. То есть, заряды действуют друг на друга благодаря своим электрическим полям.
Примечание: Не следует путать пробный и элементарный заряд.