Удельное электрическое сопротивление земли

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

Удельное электрическое сопротивление земли
Схема установки одиночного вертикального заземлителя

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Удельное электрическое сопротивление земли
Таблица определения параметров заземлителей

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:

где Rн – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Величины расчетного электрического удельного сопротивления грунта (таблица)

Грунт Удельное сопротивление, среднее значение (Ом*м) Сопротивление заземления для комплекта ZZ-000-015, Ом Сопротивление заземления для комплекта ZZ-000-030, Ом Сопротивление заземления для комплекта ZZ-100-102, Ом
Вечномерзлый грунт (песок) 50 000 Требуются специальные мероприятия по уменьшению удельного сопротивления грунта. Например, замена грунта (подробнее на отдельной странице).
Вечномерзлый грунт (суглинок) 20 000
Кварц 15 000
Талый слой (у поверхности) в зонах вечномерзлого грунта 500 – 1000 43 – 87 24 – 47 20 – 39
Дресва (мелкий щебень/крупный песок) 5 500 477 260 227
Известняк поверхностный 3 000 – 5 000 260 – 434 142 – 236 118 – 196
Щебень мокрый / сухой 3 000 / 5 000 260 / 434 142 / 236 118 / 196
Песок сухой 1 000 – 4 000 87 – 347 47 – 189 39 – 165
Базальт 2 000 174 94 78
Гранит 1 100 – 2 000 95 – 174 52 – 94 43 – 78
Песчаник 1 000 87 47 39
Бетон 40 – 1 000 3 – 87 2 – 47 1,5 – 39
Гравий однородный 800 69 38 31
Песок влажный 500 43 24 20
Гравий глинистый, неоднородный 300 26 14 12
Гнейс разложившийся 275 24 12 11
Песок влажный 130 – 400 11 – 35 6 – 19 5 – 16
Лёсс (желтозем) 250 22 12 10
Каменный уголь 150 14 7 6
Супесь (супесок) 150 14 7 6
Мергель 150 14 7 7
Суглинок при температуре минус 5 С° 150 6
Суглинок полутвердый, лессовидный 100 9 5 4
Мел 60 5 3 2
Глина полутвердая 60 5 3 2
Сланец графитовый 55 5 3 2
Мергель глинистый 50 4 2 2
Торф при температуре 0 С° 50 4 2 2
Вода равнинной реки 50 4 2 2
Вода прудовая 40 0,3 0,2 0,2
Садовая земля 40 3 2 1,5
Зола, пепел 40 3 2 1,5
Вода грунтовая 20-60 0,3 0,2 0,2
Песок, сильноувлажненный грунтовыми водами 10 – 60 0,8 – 5 0,5 – 3 0,4 – 2
Суглинок, сильноувлажненный грунтовыми водами 10 – 60 0,8 – 5 0,5 – 3 0,4 – 2
Ил 30 3 1,5 1
Торф 25 2 1 1
Глина, сильноувлажненная грунтовыми водами 20 1,5 1 0,5
Солончак 20 1,5 1 0,5
Кокс 2,5 0,2 0,1 0.1
Графитовая крошка 0,1 – 2
Вода морская 0,2

Сопротивление заземления для комплектов ZZ-000-015 и ZZ-000-030, указанное в таблице, может использоваться при различных конфигурациях заземлителя – и точечной, и многоэлектродной.

Вместе с таблицей ориентировочных величин расчетного удельного сопротивления грунта предлагаем Вам воспользоваться географической картой уже смонтированных ранее заземлителей на базе готовых комплектов заземления ZandZ с результатами замеров сопротивления заземления.

Глина, суглинок, супесь (различия)

Рыхлые осадочные грунты, состоящие из глины и песка, классифицируются по содержанию в них глинистых частиц:

Радиаторы или водяные конвекторы что лучше?

Конвекторы основываются на принципе прогрева помещения посредством потока воздуха. Он нагревается проходя через корпус установки для отопления. В свою очередь радиаторы обогревают помещение излучая тепло с корпуса поверхности.

Популярные статьи  Что делать, если дерево упало на провода?

Большую популярность заслужили радиаторы. Их принцип работы можно сравнить с работой русской печи.

Конвекторы представляют собой нагревающиеся панели, они отапливают пространство с помощью движения холодных и теплых воздушных масс. В состав конвектора входит труба, в которой расположен теплоноситель. Труба обрамляется ребрами, пластинами которые подогревают окружающее пространство. Изготавливаются пластины зачастую из меди, либо стали. Конвекторы разделяются на внешние и встроенные. Первый тип конвекторов крепится на стену, второй может быть закреплен вдоль пола, либо стены. К конвекторам так же относятся теплые плинтусы. Данное устройство отличное решение для людей, которые не желают зависеть от систем государственного отопления.

Используются конвекторы в качестве дополнительного и основного отопления, особенно незаменимы в тех местах, где стандартные радиаторы не применяются. К примеру, встроенные конвекторы в пол, располагаются и вдоль раздвигающихся дверей, стеклянных стен. Конвекторы намного быстрее обогревают комнату и быстрее остывают. Приборы долговечны в эксплуатации.

Если в отоплении частного дома для Вас лучше, когда помещение прогревается быстрее и более равномерно, то ставьте конвекторы. Самые распространенные варианты – это стальные радиаторы (60% конвекции) или медно-алюминиевые (90% конвекции). Если эти пункты не важны, то ставьте обычные радиаторы.

Закон Ома для участка цепи

С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.

Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».

У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.

Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

Математически его можно описать вот так:

Закон Ома для участка цепи

I = U/R

I — сила тока

U — напряжение

R — сопротивление

Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.

Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье.

Давайте решим несколько задач на закон Ома для участка цепи.

Задача раз

Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.

Решение:

Возьмем закон Ома для участка цепи:

I = U/R

Подставим значения:

I = 220/880 = 0,25 А

Ответ: сила тока, проходящего через лампочку, равна 0,25 А

Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.

Задача два

Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.

Решение:

Сначала найдем сопротивление проводника.

R = ρ · l/S

Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.

Это значит, что все величины уже даны в СИ и перевод не требуется:

R = 1,05 · 0,5/0,01 = 52,5 Ом

Теперь возьмем закон Ома для участка цепи:

I = U/R

Подставим значения:

I = 220/52,5 ≃ 4,2 А

Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А

А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.

Задача три

Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А

Решение:

Возьмем закон Ома для участка цепи и выразим из него сопротивление:

I = U/R

R = U/I

Подставим значения и найдем сопротивление нити:

R = 220/8,8 = 25 Ом

Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:

R = ρ · l/S

ρ = RS/l

Подставим значения и получим:

ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2/м

Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.

Ответ: нить накаливания сделана из константана.

Влияние различных факторов

Состав земли, размеры, конфигурация и компактность размещения её фрагментов, влагосодержание и температура, содержание растворимых химических компонентов (солей, кислот, щелочей, остатков гниения органических примесей) отражаются на значении уровня электропроводности. Все эти параметры трансформируются в зависимости от времени года, поэтому меняются и свойства грунта, причём в обширном диапазоне.

В условиях сухого и жаркого лета верхние почвенные слои просыхают, зимой промерзают, в обоих случаях противодействие токорастеканию значительно увеличивается. Так, на глубине 30 см при понижении температуры воздуха с 0 °C до минус 10 °C удельное электросопротивление грунта возрастает в 10 раз, а на глубине 50 см — в 3 раза. Это позволяет оценить коррозионную активность почвы и получить исходные данные для выбора эффективной конструкции заземления или проектирования электрозащитного оборудования для подземного сооружения.

Исходя из этого, коррозионная активность грунтов делится на группы, сведения о которых приводятся в таблице:

Коррозионная активность Удельное электросопротивление, Ом·м
Низкая более 100
Средняя от 20 до 100
Повышенная от 10 до 20
Высокая от 5 до 10
Весьма высокая до 5
Популярные статьи  Чем отличается переменный ток от постоянного

Электросопротивление грунта непосредственно влияет на монтажные работы: чем меньше его значение, тем проще произвести установку заземляющих устройств, а это снижает денежные и трудовые затраты.

Электрическое сопротивление земли

«Землей» профессиональные электрики называют верхние слои земной поверхности, которые способны проводить электрический ток. Свойства земной коры, как проводника электрического тока, зависят, прежде всего, от ее структуры и входящих компонентов.

Основные составляющие «природного проводника», влияющие на его токопроводимость — это наличие таких составляющих почвы, как:

— глинозем и ряд других.

В основном они выступают в роли изоляторов, и проводимость земной коры напрямую связана с составом почвенного раствора различных солей и влаги, находящихся между нетокопроводящими твердыми компонентами.

Таким образом, земная кора обладает, благодаря солевым растворам, ионной проводимостью. В отличие от электронной проводимости металлов, ее главная отличительная особенность – более высокое электрическое сопротивление.

Как проводник, земля определяется удельным электрическим сопротивлением ρ, который предполагает сопротивление куба соответствующего грунта с гранями размером 1х1 см.

Этот показатель, в первую очередь, зависит не только от состава почвы, но также ее влажности, качественного состава солей, кислот и щелочей, а также температуры.

Удельное электрическое сопротивление земли

В итоге «разбежка» удельного сопротивления различного грунта просто огромна: так, например, у глины этот показатель от 1 до 50 Ом/м, у песчаника он уже 10 – 100 Ом/м, а у кварца порядка десяти в 12-14 степени.

В качестве примера можно привести удельное электрическое сопротивление естественных природных растворов, образующихся в трещинах и порах. Так, обычные природные воды, в зависимости от состава входящих в них солей, обладают сопротивлением от 0,07 до 600 Ом / м.

Удельное электрическое сопротивление земли

Естественно, что величина удельного сопротивления земли (ρ) будет снижаться с увеличением токопроводящих растворенных веществ в почве, общим повышением влажности, уплотнением грунта и повышением (в определенных условиях) внешней температуры.

А вот пропитка различными производными нефтехимии, а также промерзание приводит к существенному повышению этого показателя.

С учетом того, что земляной покров неоднороден, и состоит из нескольких уровней с различным удельным сопротивлением, теперь для расчетов, в частности заземления, принято считать, земля представляет собой, как минимум два слоя с соответствующими показателями.

Использование такой расчетной двухслойной модели позволяет учитывать различные особенности грунта, дифференцируя их, в том числе, с учетом замерзания или высыхания верхнего слоя, а также с учетом влияния зон грунтовых вод.

Точные аналитические расчеты (с учетом вышеизложенного) весьма затруднены, и удельное сопротивление земли, необходимое для проектирования, получают, как правило, непосредственным ее измерением на местности.

Для этого используют два основных метода: «пробный вертикальный электрод» и вертикальное электрическое зондирование. Выбор методики зависит от точности измерений и параметров исследуемых грунтов.

Источник

Водяные теплые полы

Водяные полы гарантируют комфортное пребывание в помещении. Пол с водяным подогревом — достаточно непростая конструкция, но рентабельная за счет удобства и уюта. Монтаж такого сооружения влетает в копеечку, но популярен из-за незначительных счетов при эксплуатации. Под напольное покрытие прокладываются трубы, а по ним циркулирует подогретая вода. Для правильной циркуляции требуется насос. Вариант обогрева очень хорошо подойдет для загородных домов большой площади в которых не подключено центральное отопление. В данной ситуации покупка и монтаж водяного пола обойдется дешевле, нежели приобретение и установка электрической системы отопления (за счет цен на электричество).

Как нужно измерять сопротивление

Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

Удельное электрическое сопротивление земли

В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

  1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
  2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
  3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

Удельное электрическое сопротивление земли

Виды заземляющих конструкций

Расчёт заземления следует проводить с учётом того, где оно будет располагаться. По месту расположения заземляющая конструкция может быть:

  • Выносной. Заземлитель устанавливается за пределами площади, на которой находятся приборы, нуждающиеся в отведении электрического заряда.
  • Контурной. Электроды размещаются по контуру площади с оборудованием, а также внутри неё.

Заземление приборов, находящихся в закрытых помещениях, осуществляется путём прокладывания специальных магистралей для укладки проводов. Если электрооборудование располагается на открытой местности, необходимости в оборудовании магистралей нет, корпусы приборов могут соединяться с заземлительным контуром напрямую с помощью кабеля.

В качестве основных деталей в контурах могут использоваться естественные и искусственные заземлители. К первому типу относятся:

  • металлические корпуса зданий, соединённые с землёй;
  • свинцовые оболочки кабелей, колодцев, скважин;
  • подземные металлические коммуникации (кроме труб теплотрасс и магистралей для взрывчатых и горючих веществ).

Для отведения заряда от распределительных устройств и подстанций естественным путём обычно используются опоры отводящих воздушных линий электропередач. В качестве соединительных элементов в таких случаях выступают громозащитные тросы.

Когда возможность использования естественных элементов заземления отсутствует или они не дают нужного результата, их заменяют стержнями из угловой стали, стальными трубами или прутьями из стали.

Все заземлители искусственного типа должны иметь определённые размеры, которые следует учитывать, проводя расчёт контура заземления. В противном случае их использование не принесёт результата.

Нормы для каждого из типов

Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

  1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
  2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
  3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
  • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
  • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
  • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
  • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.
Популярные статьи  Схема подключения автоматов в щитке

Удельное электрическое сопротивление земли

Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

Величины расчетного электрического удельного сопротивления грунта (таблица)

Грунт

Удельное сопротивление, среднее значение (Ом*м)

Сопротивление заземления для комплектаZZ-000-015, Ом

Сопротивление заземления для комплектаZZ-000-030, Ом

Сопротивление заземления для комплектаZZ-100-102, Ом

Вечномерзлый грунт (песок)

50 000

Требуются специальные мероприятия по уменьшению
удельного сопротивления грунта. Например, замена грунта
(подробнее на отдельной странице).

Вечномерзлый грунт (суглинок)

20 000

Кварц

15 000

Талый слой (у поверхности) в зонах вечномерзлого грунта

500 – 1000

43 – 87

24 – 47

20 – 39

Дресва (мелкий щебень/крупный песок)

5 500

477

260

227

Известняк поверхностный

3 000 – 5 000

260 – 434

142 – 236

118 – 196

Щебень мокрый / сухой

3 000 / 5 000

260 / 434

142 / 236

118 / 196

Песок сухой

1 000 – 4 000

87 – 347

47 – 189

39 – 165

Базальт

2 000

174

94

78

Гранит

1 100 – 2 000

95 – 174

52 – 94

43 – 78

Песчаник

1 000

87

47

39

Бетон

40 – 1 000

3 – 87

2 – 47

1,5 – 39

Гравий однородный

800

69

38

31

Песок влажный

500

43

24

20

Гравий глинистый, неоднородный

300

26

14

12

Гнейс разложившийся

275

24

12

11

Песок влажный

130 – 400

11 – 35

6 – 19

5 – 16

Лёсс (желтозем)

250

22

12

10

Каменный уголь

150

14

7

6

Супесь (супесок)

150

14

7

6

Мергель

150

14

7

7

Суглинок при температуре минус 5 С°

150

6

Суглинок полутвердый, лессовидный

100

9

5

4

Мел

60

5

3

2

Глина полутвердая

60

5

3

2

Сланец графитовый

55

5

3

2

Мергель глинистый

50

4

2

2

Торф при температуре 0 С°

50

4

2

2

Вода равнинной реки

50

4

2

2

Вода прудовая

40

0,3

0,2

0,2

Садовая земля

40

3

2

1,5

Зола, пепел

40

3

2

1,5

Вода грунтовая

20-60

0,3

0,2

0,2

Песок, сильноувлажненный грунтовыми водами

10 – 60

0,8 – 5

0,5 – 3

0,4 – 2

Суглинок, сильноувлажненный грунтовыми водами

10 – 60

0,8 – 5

0,5 – 3

0,4 – 2

Ил

30

3

1,5

1

Торф

25

2

1

1

Глина, сильноувлажненная грунтовыми водами

20

1,5

1

0,5

Солончак

20

1,5

1

0,5

Кокс

2,5

0,2

0,1

0.1

Графитовая крошка

0,1 – 2

Вода морская

0,2

Сопротивление заземления для комплектов ZZ-000-015 и ZZ-000-030, указанное в таблице, может использоватьсяпри различных конфигурациях заземлителя – и точечной, и многоэлектродной.

Вместе с таблицей ориентировочных величин расчетного удельного сопротивления грунта предлагаем Вам
воспользоваться географической картой уже смонтированных ранее заземлителей на базе готовых комплектов заземления ZandZ
с результатами замеров сопротивления заземления.

Глина, суглинок, супесь (различия)

Рыхлые осадочные грунты, состоящие из глины и песка, классифицируются по содержанию в них глинистых частиц:

  • глина– более 30%. Глина очень пластичная, хорошо скатывается в шнур (между ладонями). Скатанный из глины шар сдавливается в лепешку без образования трещин по краям.
    • тяжелая – более 60%
    • обычная – от 30 до 60% с преобладанием глинистых частиц
    • пылеватая – от 30 до 60% с преобладанием песка
  • суглинок– от 10% до 30% глины. Этот грунт достаточно пластичен, при растирании его между пальцами не чувствуются отдельные песчинки. Скатанный из суглинка шар раздавливается в лепешку с образованием трещин по краям.
    • тяжелый – от 20 до 30%
    • средний – от 15 до 20%
    • легкий – от 10 до 15%
  • супесь (супесок) – менее 10% глины. Является переходной формой от глинистых к песчаным грунтам. Супесь наименее пластичная из всех глинистых грунтов; при ее растирании между пальцами чувствуются песчинки; она плохо скатывается в шнур. Скатанный из супеси шар рассыпается при сдавливании.
Оцените статью
( Пока оценок нет )
Добавить комментарий