Область применения и виды
трансформатор в телевизоре
Бытовые трансформаторы защищают технику при перепадах напряжения.
Поэтому применяют их в следующих приборах:
- в освещении;
- осциллографах;
- телевизорах;
- радиоприёмниках;
- измерительных устройствах и т.д;
Сварочные экземпляры, разделяющие силовую и сварочную сеть, активно используются при сварке и электротермических конструкциях, где успешно понижают величину напряжения до обязательных номиналов.
В энергосети используются масляные агрегаты, где напряжённость 6 и 10 кВ.
Многие автоматические конструкции используют трансформаторы, где напряжение на обвивках несуидальное.
Виды:
- Вращающийся. Передача сигнала ведётся на объекты, которые вращаются. Например, видеомагнитофон, где передача сигнала ведётся на барабан узла магнитной головки. Здесь существуют 2 половины магнитопровода и вращение их происходит с минимальным зазором в отношении друг друга. На основании этого, реализуется большая скорость оборотов, в контактном способе сигнала достичь такого эффекта не считается возможным.
- Пик-трансформатор. В этом варианте происходит преобразование синусоидального напряжения в сплески, имеющие пикообразную форму. Активно используются в управлении тиристоров, а также электронных и полупроводниковых устройств.
- Согласующий. Принимает участие в согласовании сопротивлений в разных промежутках электронной схемы, при этом, форма сигнала искажается минимально. Синхронно обеспечивается гальваническая развязка между зонами схем.
- Разделительный. Здесь 2 обмотки не соединены между собой электрически. Такая схема даёт возможность повысить безопасность электрических сетей. Когда происходит случайное одновременное прикосновение к токоведущей части и земли, выдаётся гальваническая развязка электрической цепи.
- Импульсный. В этом варианте преобразуются импульсные сигналы за очень короткий промежуток времени (десятки микросекунд), при этом, искривление конфигурации импульса минимально.
- По напряжению. Здесь происходит конверсия большого напряжения в низкую величину. Этот вариант позволяет изолировать измерительные и логические цепи от большого напряжения.
- По току. В этом типе измеряются цепи с большим током. Например, в конструкциях релейных щитов электроэнергетических систем. Поэтому, применяются достаточно жёсткие требования к точности.
- Автотрансформатор. В этом типе соединение 2 обмоток ведётся напрямую. В результате, создаётся электрическая и электромагнитная связь, чем объясняется высокий КПД этого вида. Недостатком такого устройства, можно назвать отсутствие изоляции, то есть не существует гальваническая развязка.
- Силовой. Этот вариант используется при изменяемом токе и преобразует электрическую энергию в установках и электросетях. Широко применяется этот тип на линиях ЛЭП с высокой напряжённостью (35-750 кВ), городских электрических сетях (10 и 6 кВ).
- Сдвоенный дроссель. Наличие 2 равных обвивок, даёт возможность получить более результативный дроссель, чем обычный. Их используют на вводе фильтра в блоке питания, а также в звуковом оборудовании.
- Трансфлюксор. Оставшаяся намагниченность магнитного провода имеет большую величину, что позволяет использовать его для сохранения сведений.
Контроль работы устройства
Во время сервисных работ строго запрещается заглядывать внутрь бака, сливать полностью масла и проводить какие-либо манипуляции с содержимым корпуса трансформатора. Работоспособность изделия проверяется путем химической оценки пробы масла и холостого подключения аппарата. В результате удается узнать, насколько трансформатор работоспособен в данный момент времени.
Даже к месту монтажа привозят уже готовую конструкцию, которую остается только подключить к сети. Заливка маслом производится на заводе, не говоря уже о более сложных процедурах. Для доставки оборудования используется специализированная техника.
Система защиты
Трансформаторы представляют собой надежное оборудование. Однако из-за различных повреждений может произойти аварийная ситуация. Поэтому применяются различные виды защит трансформатора.
Подобные системы отключают оборудование от сети при наличии повреждений. В зависимости от типа конструкции защита может отсоединить питание только от поврежденной части прибора. При обнаружении поломки система может подавать сигнал. При этом используют различные типы защиты автотрансформаторов.
Дифференциальная защита необходима при нарушениях целостности обмоток, ошиновки и вводов оборудования. Если же повреждения обнаруживаются со стороны источника питания, происходит токовое отсекание. Это защита мгновенного действия.
Газовая защита применяется при повреждениях внутри бака. При этом может выделяться газ. Также она срабатывает при понижении уровня масла.
Максимальная токовая или направленная защита позволяет уберечь оборудование от сверхтоков. Также в некоторых конструкциях может предусматриваться защита от замыкания на корпус и от перегрузки. Последняя система действует на сигнал, оповещая персонал.
Рассмотрев особенности конструкции и принцип работы, можно понять, что собой представляет трансформатор. Виды трансформаторов, существующие сегодня, отличаются по ряду признаков. Это влияет на их функциональность.
Шихтовка — магнитопровод
Неисправности электрооборудования и способы их устранения — принцип действия трансформатора, хх и кз
Полученные при расчете заполнения паза его размеры являются размерами паза в свету, т.е. размерами реального паза в собранном шихтованном сердечнике с учетом неизбежной при этом гребенки, образующейся за счет допусков при штамповке листов и шихтовке магнитопроводов.
Сборка пластин магнитопровода в переплет — шихтовка. |
По форме стыка пластин стержней и ярм шихтованные магнитопроводы выполняют с прямыми, косыми и комбинированными стыками. Схемы шихтовки магнитопроводов с различными стыками представлены на рис. 2.12. Использование того или иного стыка зависит от марки стали, конструкции магнитопровода и мощности трансформатора.
Схема расположения пластин стали в начале шихтовки трехфазного двухрамного магнитопровода. |
Подготовительные работы, предшествующие сборке бесшпилечных магнитопроводов, описаны в § 6 — 4, в. Так же, как при шихтовке магнитопроводов шпилечной конструкции, укладка пластин активной стали производится послойно по всему контуру магнитной ситемы.
Втягивающие катушки контакторов питаются от сети переменного тока и создают магнитное поле переменной полярности. При переменном магнитном поле возникает необходимость шихтовки магнитопровода, что значительно усложняет конструкцию и снижает ее износоустойчивость.
Зависимость приращения величины удельных потерь ( ЛР от угла ( г несовпадения. магнитного потока с направлением прокатки . |
Двухрамные магнитопроводы мощных трансформаторов выполняют тоже с косым стыком. С целью обеспечения перекрытий стыков пластины при шихтовке магнитопровода взаимно смещают по длине, в связи с чем один из острых углов пластин каждого слоя — ус выступает за основной контур магнитопровода. Во избежание травм работников об острый угол и предупреждения загибов последнего при шихтовке магнитопровода ус, как правило, в процессе изготовления пластин обрезается.
Литая станина с впрессованным магнитопроводом Сварная станина. |
Для машин переменного тока большой мощности ( больше сотен киловатт) чаще всего применяют сварные станины. Вторая торцевая стенка открытая, и через нее ведут шихтовку магнитопровода.
На первом конвейере собирают остов с обмотками ( при шихтовке магнитопровода непосредственно в обмотку), на втором производят пайку отводов ВН и НН и изолировку мест пайки, после чего готовая активная часть трансформатора идет в сушку. Этот же конвейер подает трансформатор на склад готовой продукции. Вне конвейера производят заготовку отводов ВН и НН, сборку переключателя и подгонку резиновых уплотнительных прокладок. Сборку активной части трансформатора производят на пластинчатом конвейере, состоящем из двух втулочно-роликовых цепей, на которых закрепляются специальные приспособления. В них укладывают заранее скомплектованные обмотки всех трех фаз трансформатора.
У трансформаторов, находившихся в длительной эксплуатации и подвергавшихся неоднократным ремонтам, сопротивление межлистовой изоляции бывает намного ниже, чем у новых или не подвергавшихся ремонту. Это объясняется тем, что при каждом ремонте, связанном с расшихтовкой и шихтовкой магнитопровода ( стержней и ярем), частично истирается и разрушается изоляционная лаковая пленка или папиросная бумага, покрывающая отдельные листы пакетов активной стали магнитопровода. Это обстоятельство должно быть учтено при сопоставлении произведенных замеров с соответствующими данными заводских испытаний, приведенных в протоколах.
Пример чертежа листа статора. |
По внутренней поверхности магнитопровода штампуют пазы требуемой формы для размещения в них обмотки статора. Так как в размерах отдельных зубцов имеется разброс, обусловленный допусками при изготовлении штампа, то при шихтовке магнитопровода листы укладываются в одно и то же положение относительно друг друга по шихтовочному знаку А, который вырубают на внешней поверхности. Для изоляции листов друг от друга их после снятия заусенцев лакируют. Если листы изготовляют из стали 2013, то их подвергают термообработке, в результате которой уменьшаются потери в стали и на поверхности создается оксидный изоляционный слой.
Схема испытания контактора типа. |
История создания трансформаторов
Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.
Столетов Александр Григорьевич (профессор Московского университета) сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).
Братья Гопкинсоны разработали теорию электромагнитных цепей.
В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.
Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.
В 1848 году французский механик Г.Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.
30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора переменного тока. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.
Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. В 1885г. венгерские инженеры фирмы «Ганц и К°» Отто Блати, Карой Циперновский и Микша Дери изобрели трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов.
Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток.
С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа «беличья клетка» и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.
1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).
В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.
Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50%, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.
Классификация трансформаторов
Трансформаторы бывают:
- повышающими (если на вторичной обмотке напряжение больше, чем на первичной);
- понижающими (если на второй катушке напряжение меньше, чем на первой).
Напряжение на первичной и выходной катушках зависит от соотношения количества витков обмоток на них. Чем их больше, тем выше напряжение. Соответственно, если входная обмотка имеет больше витков, чем выходная, на ней будет более высокое напряжение, и наоборот.
Трансформаторы отличаются обширной классификацией по назначению:
- Силовой. Назначение силовых трансформаторов ясно из названия. В основном это устройства большой мощности, используемые в сетях ЛЭП для преобразования электрической энергии и передачи ее конечному потребителю. Использование таких устройств возможно в высоковольтных трехфазных сетях.
- Автотрансформатор. Это прибор, в котором первичная и вторичная обмотки соединены между собой напрямую. Такое устройство характеризуется тремя выводами. Трансформаторы данного типа имеют повышенный риск высоковольтного удара по нагрузке. Поэтому они должны быть надежно заземлены.
- Трансформатор тока или измерительный трансформатор. В таких устройствах первичную обмотку подключают последовательно в электроцепь с другими устройствами и получают гальваническую развязку. Первичная цепь контролируется изменением однофазной нагрузки, а вторичная катушка используется в цепи сигнализации или измерительных приборов. В таком типе устройства вторичная обмотка работает в режиме короткого замыкания.
- Трансформатор напряжения. Это устройство, понижающее напряжение. Обычно применяется для изоляции цепей защиты измерительных приборов.
- Импульсный. Это прибор, созданный для преобразования импульсов при обязательном сохранении их формы. Устройство меняет амплитуду и полярность импульсных сигналов, не затрагивая форму.
- Сварочный. Для работы такого устройства нужен большой сварочный ток, с помощью которого аппарат расплавляет металл. Сетевое напряжение при этом снижено до безопасного уровня.
- Разделительный. Основной характеристикой такого прибора является отсутствие электрической связи между обводками. Силовые разделительные аппараты используют для повышения безопасности электросетей и для обеспечения гальванической развязки между узлами электроцепей.
- Согласующий. Такое устройство применяется для согласования сопротивления в электронных схемах. Прибор обеспечивает минимальное искажение сигналов, создает развязки между узлами устройств в электрической цепи.
- Пик-трансформатор. Аппарат преобразовывает синусоидальный ток в импульсное напряжение. Полярность напряжения на выходе меняется через каждые полпериода.
- Воздушный. Это силовой трансформатор сухого охлаждения. Такой тип устройств обычно применяется для преобразования напряжения в сети, в том числе и в трехфазных схемах.
- Масляный. Это силовой трансформатор, у которого охлаждение происходит с помощью специального масла. Такие приборы применяют при большой выходной мощности (выше 6 кВ), чтобы предотвратить разрушение изоляции обмоток вследствие их перегрева.
- Сдвоенный дроссель. Устройство имеет абсолютно одинаковые катушки, между которыми образуется встречный индуктивный фильтр. Такой прибор эффективнее, чем у дросселя.
- Вращающийся. Устройство состоит из двух половинок сердечника с катушками, которые вращаются относительно друг друга. Обмен сигналами в приборе происходит при больших скоростях вращения.
Защита силовых трансформаторов
В первую очередь необходимо постоянно контролировать уровень масла, циркулирующего внутри бака. На его температуру оказывает влияние целый комплекс различных факторов. В связи с этим происходит постоянное изменение объема и главной задачей становится поддержание уровня масла в установленных границах. Важную роль в этом играет использование расширительного бачка, компенсирующего все объемные отклонения. Кроме того, он позволяет вести наблюдения за текущим уровнем масла.
Данные о состоянии уровня снимаются с помощью маслоуказателя, подключаемого параллельно с расширительным бачком.
Силовые трансформаторы должны быть защищены от проникновения влаги, поскольку расширительный бак своей верхней частью плотно контактирует с окружающей средой. С этой целью устанавливается осушитель воздуха, создающий препятствия попаданию влаги в масло, что существенно снижает его диэлектрические свойства.
Важной составляющей масляной системы считается газовое реле, защищающее трансформатор от внутренних повреждений. Оно монтируется внутри трубопровода, который соединяет между собой основной и расширительный баки
Во время нагрева масло и органическая изоляция выделяют газы, попадающие в емкость газового реле, содержащую внутри чувствительный элемент.
В некоторых случаях может возникнуть аварийное повышение давления внутри бака. В целях защиты на крышке трансформатора выполняется монтаж выхлопной трубы. Ее нижний конец должен сообщаться с емкостью бака, а масло – поступать внутрь до необходимого уровня в расширителе. Над расширителем возвышается верхняя часть трубы, которая отводится в сторону и незначительно загибается вниз. Ее конец герметично закрывает стеклянная предохранительная мембрана, разрушающаяся в случае аварийного повышения давления.
Силовые трансформаторы, имеющие обмотку высокого напряжения свыше 1000 В, оборудуются релейной защитой от основных повреждений и неисправностей. Непосредственными защитными устройствами являются вторичные реле прямого или косвенного действия. Их подключение осуществляется не напрямую, а через измерительные трансформаторы напряжения и тока.
ПРИМЕР ИСПОЛЬЗОВАНИЯ ТОКОВ ФУКО
Для того чтобы оценить масштабы энергии, которая может выделяться при протекании вихревых токов, полезно вспомнить принцип работы индукционных плавильных печей. В ёмкость печи, выполненную из огнеупорной керамики, помещают лом стали, чугуна или железную руду.
Плавильная ёмкость окружена мощной спиральной обмоткой, по которой пропускается ток высокой частоты. Содержимое ёмкости в данном случае играет роль магнитного сердечника.
Под воздействием возникающих вихревых токов происходит интенсивный разогрев и расплавление загруженного железосодержащего материала. Электроплавильное производство относится к одному из самых энергоёмких.
Потери на перемагничивание обусловлены следующими факторами:
1. Макроструктура магнитных материалов имеет зернистый характер. Образование структурных зёрен происходит на стадии застывания расплавленного металлического сплава вследствие возникновения множества очагов кристаллизации.
2. В результате образуются зёрна структуры, которые представляют собой монокристаллические образования — домены. Каждый домен магнитного материала имеет некоторое результирующее направление вектора магнитной индукции.
При отсутствии внешнего магнитного поля векторы индукции доменов направлены хаотически. Но если поместить такой материал в магнитное поле, векторы доменов становятся однонаправленными.
Применительно к процессу трансформации происходит следующее. Ток первичной обмотки создаёт в сердечнике магнитное поле, направление индукции которого меняется с частотой 50 герц (при подключении к обычной электросети).
С такой же частотой происходит переориентация векторов магнитной индукции доменов магнитопровода. Энергия, затрачиваемая на циклическое перемагничивание, выделяется в виде тепла, нагреваемого сердечник.
Энергию, затраченную на перемагничивание сердечника, называют также потерями на гистерезис. Величина этих потерь зависит от свойств материала трансформаторного сердечника, а если более конкретно, от вида их кривой намагничивания — петли гистерезиса.
Наименьшими потерями характеризуются магнитомягкие материалы — электротехническая сталь и пермаллой, которые и используются при изготовлении трансформаторных магнитопроводов.
Главные параметры и характеристики
У каждого устройства есть рабочие показатели, включающие такие аспекты, как – максимальная нагрузка, погрешности, предел мощности и другие. Имеют свои индивидуальные характеристики и трансформаторы тока. К ним относятся:
Номинальный ток
Это предельная величина напряжения при которой, может работать устройство. Подразумевается допустимый номинал первичного тока, проходящего по первичной обмотке. Данный показатель указывается в паспорте, обязательно прилагающемся в базовой комплектации. Выделяют стандартный ряд, отображающийся, так же, в маркировке аппаратов.
Существует еще одно понятие – номинал вторичного тока. Зачастую от стандартный – двух величин 1А или 5А. Однако, некоторые производители предлагают выпуск устройств по индивидуальным характеристикам. Но и в этом случае, выбор будет не велик и ограничится двумя показателями 2А или 2.5А.
Коэффициент трансформации
Это соотношение, позволяющее определить, во сколько раз понижается подаваемое напряжение на первичную обмотку, проходящее через обе обмотки, в сравнении с выходящим. Определяется таким образом – показатель тока, поступающего на первичную обмотку, делится на величину, измеренную во вторичной, получают Кт. При этом, первичную обмотку необходимо закоротить – прервать передачу напряжения по цепи. Рассчитывается коэффициент на производстве. Серийный выпуск устройств производится по аналогии. Все показатели указываются в паспорте или в маркировке.
Токовая погрешность
Это процентное соотношение математической разности величин вторичного тока и первичного, к показателю приведенного тока ко вторичной цепи. Включает в себя два понятия – угловая и относительная погрешности. В соответствии с вышеупомянутым законом об электромагнитной индукции, направленные колебания или векторы образуют угол между первичными и вторичными потоками. Рассчитывает показатель по формуле и выражается в минутах.
Относительная погрешность – это математическая разница между величинами первичного и вторичного тока к реальной величине, приведенного тока ко вторичной цепи. Выделяют дополнительное понятие – относительно полной погрешности. Данный показатель подразумевает соотношение геометрической разности, тех же величин, только, в соответствии с мгновенным значением, т.е. замеренным в определенный интервал времени.
Номинальная предельная кратность
Показатель максимального значения кратности первичного тока, при условии, что полная погрешность на вторичной нагрузке не превысит 10%.
Максимальная кратность вторичного тока
Соотношение наибольшего показателя вторичного тока к его номинальной величине, при номинальном значении вторичной нагрузки. Данный показатель формируется насыщением самого магнитопровода, при условии, что дальнейшее возрастание не приводит к увеличению потока.
Один из важнейших показателей. Регламентирован и контролируется нормативной документацией. Согласно ГОСТу – рассчитывается для каждого типа устройств и должен строго соответствовать установленным нормам. Различают 9 основных классов точности для измерительных приборов и два для защитных. В стандарте предусмотрена таблица с точной нормировкой и условными обозначениями. От класса точности устройства будет зависеть, насколько точны будут показатели измерительных устройств.
Классификации
Трансформаторы классифицируются по ряду параметров, таким как:
- Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
- Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
- Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
- Номинальное напряжение. Бывают низко- и высоковольтными.
- Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.
Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.
Силовой
Наибольшее распространение получил силовой трансформатор. Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.
Силовой трансформатор
Измерительные
Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.
Высоковольтный ТТ(слева) и низковольтный ТТ(справа)
С помощью трансформаторов напряжения (ТН), тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.
Высоковольтный ТН(слева) и низковольтный ТН(справа)
Импульсный
При необходимости преобразования сигналов импульсного характера применяются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не затрагивают форму.
Автотрансформатор
В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.
Однофазный(слева) и трёхфазный(справа)
Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.
Разделительный
Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.
Разделительный трансформатор
Согласующий
Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.
Пик-трансформатор
С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.
Сдвоенный дроссель
Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.
Сдвоенный дроссель
Сварочный
Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.
Сварочный трансформатор
Эксплуатация изделий
При эксплуатации однофазных преобразующих устройств особое внимание обращается на безопасное обращение с ними, что объясняется высоким напряжением, присутствующим на первичных обмотках
Также важно учитывать следующие моменты, касающиеся правил установки и включения трансформаторов в электрические схемы:
чтобы избежать выхода обмоток из строя (выгорания), следует защищать вторичные цепи от КЗ;
важно следить за тепловым режимом сердечника и обмоток и, если потребуется, предусмотреть их охлаждение.
Уход за однофазным трансформатором сводится к стандартным процедурам, которые предусмотрены положениями действующих нормативов.
Общие сведения о трансформаторах
Трансформатор ТМГ-2500/6/0.4
В качестве преобразователей эти устройства традиционно применяются для приведения к приемлемому виду мощностей, пересылаемых по высоковольтным линиям. Для «переброски» на огромные расстояния подходят только сверхвысокие напряжения, при которых ток может иметь приемлемую величину.
Если попытаться передать энергию хотя бы на сотню километров в виде привычного напряжения 380 Вольт – для доставки до потребителя нужной мощности потребуется ток величиной в миллионы Ампер.
Для ее рассеяния нужен провод толщиной примерно с человеческое тело, что на практике реализовать невозможно. Поэтому на генерирующей электричество стороне с помощью другого (повышающего) трансформатора его значение поднимается до 110-ти кВ. В таком виде использовать электроэнергию распределения по жилым строениям и производственным объектам нельзя. Поэтому после доставки по ВВ в распределительных станциях 110 кВ понижаются до 10(6) кВ.
Отсюда они поступают в районные трансформаторные подстанции, где в местном понижающем трансформаторе приобретают свой окончательный вид 380 (220) Вольт. При таких значениях потенциалов энергию легко удается транспортировать по подземному кабелю или воздушному проводу СИП до конечного потребителя. Поэтому однофазный трансформатор играет большую роль в жизни человека.
Общее устройство и принцип работы
Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.
Рисунок 2. Устройство трансформатора
Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.
Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:
- сталь;
- пермаллой;
- феррит.
В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.
В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.
Форма сердечника может быть Ш-образной или торроидальной.
Рисунок 3. Внешний вид трансформатора
Базовые принципы действия
Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.
Если k > 1, то трансформатор повышающий, а при 0 < k < 1 – понижающий. Например, когда число витков, из которых состоит первичная обмотка, в три раза меньше количества вторичных витков, то k = 1/3, тогда U2 = 1/3 U1.
Режимы работы
Силовой трансформатор может работать в трех режимах:
- в состоянии холостого хода;
- в режиме нагрузки;
- в короткозамкнутом режиме.
Поскольку в цепи разомкнутой вторичной обмотки отсутствует ток, то в таком состоянии по первичной обмотке циркулирует ток холостого хода. Параметры этого тока используют при расчетах КПД, определяют коэффициент трансформации, находят потери в сердечнике.
Основным рабочим режимом трансформатора является состояние, когда к его второй обмотке подключена номинальная нагрузка. Первичный ток можно выразить через результирующую тока холостого хода и расчетного тока сопротивления нагрузки.
В режиме короткого замыкания вторичной обмотки, вся мощность концентрируется в цепях обмоток. В таком состоянии можно определить потери, расходуемые на нагревание проводов в обмотках.