Как работает солнечная электростанция
Функционирование таких систем основано на принципе фотоэлектрического эффекта. Заключается он в следующем:
- поток фотонов падает на поверхности солнечных панелей;
- свет определенной длины волны – в основном видимое и отчасти УФ и ИК излучение – поглощается слоем кремния или редкоземельных материалов;
- в рабочем слое ячеек возникает так называемая p/n-проводимость, в результате которой фотоны выбивают из атомов полупроводника свободные электроны;
- их поток представляет собой постоянный электрический ток, который по токопроводящим дорожкам направляется в инвертор;
- оттуда к потребляющим устройствам и АКБ направляется переменный ток напряжением 220V, использующийся с различными целями.
В автономных солнечных электростанциях вся сгенерированная энергия остается в системе. Часть ее идет на потребление, питая разнообразные электроприборы, светильники и прочее электрическое оборудование. Другая часть накапливается в АКБ, чтобы поддерживать потребление на том же уровне в ночное время суток и при пасмурной погоде. Сколько будет стоить такая солнечная электростанция, зависит от потребностей владельцев. Для загородного дома оптимальной будет СЭС на 10-20 кВт. На временно посещаемой даче может оказаться достаточно и 3-5 кВт.
Задача сетевых вариантов СЭС несколько иная. Как работает сетевая солнечная электростанция? Она подключена к централизованным электросетям, а ее схема содержит мульти тарифный счетчик. Это позволяет как получать часть недостающей энергии из сети, так и продавать излишки генерации государству по зафиксированным законодательством «зеленым тарифам». Поскольку последние в Украине достаточно высоки, владельцы таких СЭС стремятся установить максимально возможные мощности, приносящие высокую прибыль. АКБ в подобных системах не предусмотрены.
Гибридный тип солнечных электростанций объединяет в себе возможности первого и второго класса СЭС. Такие установки могут работать автономно либо в режиме получения/отдачи электроэнергии из внешних сетей. Для них удельная цена киловатта мощности максимальна, поскольку конструкция должна включать все основные элементы, необходимые для первых и вторых разновидностей станций.
Действие тарельчатых электростанций
Электростанции тарельчатого типа включают в себя различное количество модулей. Они образуют самостоятельные группы, способные выдавать повышенную мощность, от сотен киловатт до нескольких мегаватт.
Каждый модуль конструктивно включает в себя несколько основных компонентов:
- Опоры для крепления ферм. Они же используются как основание для других элементов.
- Отражатель, концентрирующий солнечные лучи. Конструктивно изготовлен в форме тарелки, что и послужило названием для всей системы. Настройка каждого отражателя осуществляется в индивидуальном порядке. Максимальный диаметр зеркала составляет 2 метра.
- Приемник. Располагается непосредственно под отражателем и принимает на себя сконцентрированные солнечные лучи. Чаще всего в качестве приемника используется парогенератор или двигатель Стирлинга.
В целом, солнечные тарельчатые установки являются своеобразной батареей, включающей в себя параболические зеркала, напоминающие своей формой спутниковую тарелку. Они располагаются таким образом, чтобы сфокусированные лучи могли нагревать теплоноситель в приемнике до 1000 градусов. Такая температура обеспечивает работу генератора и производство электроэнергии практически в любых условиях.
Геотермальная энергия в Рейкьявике и солнечные батареи для Берлина
Отдельные города по всему миру также стремятся стать климатически нейтральными. По данным CDP, из более чем 570 городов мира, по которым ведется статистика, более 100 получают по крайней мере 70% электроэнергии из возобновляемых источников — энергии воды, геотермальной, солнечной и ветровой энергии.
В списке присутствуют такие города, как Окленд, Найроби, Осло, Сиэтл, Ванкувер, Рейкьявик, Порту, Базель, Богота и другие.
Например, Берлингтон (штат Вермонт, США) уже получает 100% электроэнергии от ветра, солнца, воды и биомассы. Вся электроэнергия Рейкьявика производится за счет гидроэлектростанций и геотермальных источников. К 2040 году весь общественный и личный транспорт столицы должен стать свободным от ископаемого топлива.
100% энергии из возобновляемых источников для швейцарского Базеля обеспечивает собственная энергоснабжающая компания. Большая часть электроэнергии поступает от гидроэнергетики и 10% — от ветра. В мае 2017 года Швейцария проголосовала за постепенный отказ от атомной энергетики в пользу ВИЭ.
Зеленая экономика
Зеленые и умные: четыре прорывных эко-квартала в городах Европы
Мировые столицы также не остаются в стороне. Например, Сенат Берлина утвердил план мероприятий по развитию солнечной энергетики в столице Германии «Masterplan Solarcity». В соответствии с общей стратегией развития города Берлин должен стать климатически нейтральным к 2050 году. В конце 2018 года в Берлине работали солнечных электростанций, которые покрывали 0,7% потребления электроэнергии, к 2050 году 25% энергопотребления города будут обеспечиваться за счет солнечной энергетики.
«Мы продвигаем расширение возобновляемых источников энергии в Берлине. Сейчас на рассмотрении Сената столицы находятся два законопроекта. Закон о солнечной энергии обязывает владельцев частных домов устанавливать солнечные системы на крышах. Законопроект Администрации по окружающей среде и климату сделает использование солнечной энергии в общественных зданиях обязательным уже в 2023 году. Это радикально сократит выбросы CO2 в Берлине», — рассказала руководитель фракции «Зеленые» в берлинском Сенате Зильке Гебель.
Солнечные электростанции, использующие фотобатареи (СЭС, использующие фотобатареи)
СЭС этого типа в настоящее время очень распространены, так как в общем случае СЭС состоит из большого числа отдельных модулей (фотобатарей) различной мощности и выходных параметров. Данные СЭС широко применяются для энергообеспечения как малых, так и крупных объектов (частные коттеджи, пансионаты, санатории, промышленные здания и т. д.). Устанавливаться фотобатареи могут практически везде, начиная от кровли и фасада здания и заканчивая специально выделенными территориями. Установленные мощности тоже колеблются в широком диапазоне, начиная от снабжения отдельных насосов, заканчивая электроснабжением небольшого посёлка.
Текущие тарифы на электроэнергию в России
Для населения и приравненных к ним категорий потребителей в России устанавливаются тарифы на электрическую энергию (мощность).
Тарифы для населения рассчитывают региональные энергетические комиссии — на основе утверждаемых ФАС России методик расчета, а также в рамках утверждаемого ФАС коридора тарифов, то есть минимальных и максимальных значений. Свой тариф можно посмотреть в платежке или на сайте энергосбытовой организации, а для нашего расчета мы используем максимальные значения из коридора. Это не конечные тарифы, но значения близки к реальным.
Для юридических лиц в России цены формируются конкурентным образом на оптовом рынке. Лишь некоторые составляющие конечной цены электроэнергии имеют установленный тариф.
Конечная цена состоит из следующих составляющих:
- Цена электроэнергии.
- Цена мощности.
- Тариф на услуги по передаче электроэнергии.
- Размер сбытовой надбавки энергосбытовой компании.
- Тариф на услуги иных инфраструктурных организаций.
По стоимости электроэнергии (мощности) для юридических лиц мы будем использовать прогнозные значения цен на 2021 год администратора торговой системы оптового рынка. Для услуг по передаче возьмем максимальные значения из коридора тарифов и утвержденные тарифы для федеральной сетевой компании. Это основные составляющие.
Сбытовую надбавку и иные платежи мы учитывать не будем: они окажут незначительное влияние на конечные цены для нашего анализа.
СЭС тарельчатого типа
Тарельчатые СЭС состоят из модулей, поэтому такие станции могут применяться не только самостоятельно. Их включают в группы, тем самым повышая мощность до нескольких мегаватт. Система имеет конструкторский характер сборки. Каждый модуль такой электростанции на солнечной энергии состоит из нескольких частей:
- Опоры. Она предназначена для крепления фермы, которая служит основанием для остальных элементов.
- Приемника. Выполняет функцию концентрации солнечных лучей. Приемником может выступать двигатель Стирлинга или парогенератор.
- Отражателя. Используется, чтобы сконцентрировать солнечные лучи в генератор, расположенный прямо перед ним. Именно форма отражателя в виде тарелок дала название таким СЭС. Зеркала расположены на ферме по радиусу. Каждое из них индивидуально настроено.
Диаметр зеркал может достигать 2 м. Автономные СЭС работают только на одном модуле. Другой вариант конструкции, когда параллельно работают сразу несколько десятков модулей. Подобные станции особенно распространены на территории Нидерландов и в штате Калифорния в США.
Типы солнечных электростанций
По принципу действия солнечные электростанции можно разделить на две группы:
- Первая группа – это электростанции, в которых солнечная энергия используются для нагревания воды и получения пара, вращающего паровые турбины.
- Вторая группа – электростанции, в которых используется прямое преобразование солнечной энергии в электрическую энергию с помощью солнечных батарей.
В зависимости от конструкции солнечные электростанции первой группы подразделяются на следующие типы:
- башенная;
- тарельчатая;
- с параболическим концентратором.
Эти типы солнечных электростанций имеют промышленное значение, так как могут окупать себя только при больших мощностях. Например,
Для такой электростанции требуется построить башню высотой в 250 м, а занимаемая ее площадь достигает 200 гектаров.
При прямом фотоэлектрическом преобразовании солнечной энергии в электрическую энергию используется явление генерации электродвижущей силы в полупроводниковых переходах при облучении их световым потоком солнца. Современные кремниевые полупроводниковые солнечные элементы имеют КПД от 10 до 40 %. Это позволяет создавать солнечные электростанции достаточно большой мощности. При этом необходимо учитывать, что плотность солнечной энергии на земле при безоблачном небе составляет 1кВт/м². Это значит, что для промышленного получения мощности электроэнергии приблизительно в 1 МВт при КПД в 10 % с учетом неравномерности освещенности солнечных батарей в течение суток требуются очень большие площади батарей.
Типы СЭС
Их делят по принципу функционирования на два подвида:
- использующие солнечную энергию для подогрева воды и пара, заставляющего вращаться турбины;
- функционирующие благодаря применению фотоэлементов (прямое преобразование энергии солнца в электрическую).
Конструктивно электростанции бывают:
- башенными;
- тарельчатыми;
- имеющими параболический концентратор.
Общее у них то, что для аккумулирования тепла используют труба или емкость с водой.
Станции, использующие способность генерировать ЭДС в полупроводниковых переходах, облучаемых солнечным потоком, преобразуют его в энергию электрическую с КПД лежащем в пределах от 10 до 40%. Это высокий показатель подобных станций, даже с учетом суточного неравномерного освещения. Но, и площади для их монтажа тоже большие нужны.
Башенного типа
Он попадает в парогенератор и идет на обогрев. КПД таких устройств недостаточно большой, поскольку температура нагрева жидкости в жаркие дни может достигать 700 градусов, что для этого. Коэффициент превышает величину характерную для подобного типа устройств. Применяют этот альтернативный источник в промышленности.
Тарельчатые модульные установки
Принцип их действия схож с предыдущей конструкцией, но составляет их не сплошной материал, а зеркальные модули, а также приемник с жидкостью и отражатель. Сложность их монтажа в том, что проводить его приходится на высоте.
Работает это так:
Попавшие на один из имеющихся приемников солнечные лучи перенаправляются на отражатель. Последний, их отражает, и концентрированные лучи формирует в энергию. Очень распространены такие электростанции в Нидерландах и Америке, точнее в Калифорнии — самом солнечном регионе США.
Использующие фотобатареи
В их состав входят: разной мощности и размеров фотоэлементы (а также иных показателей). Подобные солнечные электростанции легко собрать самостоятельно. Они эффективны для снабжения энергией небольших промышленных объектов, дач и загородных домов.
Применяющие конденсаторы
Отличаются эти солнечные электростанции наличием инвертора. Используется подобное оборудование в регионах с ограниченным числом ярких и солнечных дней в году. Для увеличения концентрации лучей изменяют угол приемника.
Космические электростанции
Их еще называют аэростатными. Инновационные конструкции стали возможны благодаря уровню развития, который достигла современная наука. В них ходят помимо комплектов модулей, приемники с отражателями, расположены которые за пределами земной орбиты – на станциях орбитальных.
Комбинированные
Образованы они могут быть электростанциями:
- ветровыми;
- водяными;
- и, конечно, солнечными.
Самое сложное в их установке заключается в способности грамотно разработать проект, который позволит максимально эффективно использовать каждый тип, вошедших в состав электростанций.
Обзор цен
Купить солнечную электростанцию можно в Российской Федерации, Казахстане и Белоруссии, а также в других странах СНГ. Но, необходимые ресурсы для установки электростанции есть не везде. Значит и целесообразность в ее установке ставится под сомнение.
Стоимость может варьировать в разных регионах, но в среднем не превышает 950 тысяч рублей.
Покупать такие станции рекомендуется у брендовых компания:
- Gerber,
- Activ Solar и пр.
Можно изготовить их и самостоятельно или воспользовавшись помощью опытных инженеров, что, согласно данным статистики, происходит достаточно часто. Это позволяет существенно сэкономить.
Где приобрести | Цена в рублях |
http://satom.ru/t/solnechnye-elektrostancii-1244/?sort=rating&display=gallery | от 3163 |
https://www.avito.ru/rossiya/dlya_doma_i_dachi?q=солнечная+электростанция | от 2550 |
http://gws-energy.ru/solnechnye-elektrostantsii | по запросу |
https://www.pulscen.ru/price/050905-solnechnaya-elektrostantsiya | от 2190 |
https://ru.all.biz/elektrostancii-solnechnye-bgg1094312 | уточнять |
Разновидности солнечных электростанций
Многие страны мира в течение длительного времени пользуются солнечными электростанциями, способными преобразовывать энергию солнца в электрический ток. Они представляют собой различные виды инженерных сооружений, конструктивно различающихся между собой и работающих по собственным принципам.
Наибольшее распространение получили установки, работающие на основе фотоэлектрических элементов. Их основными компонентами являются солнечные панели, нередко занимающие довольно значительные площади. Они используются не только в производственной сфере, но и в частном секторе, обеспечивая электричеством все домашнее хозяйство. Принцип работы этих устройств основан на прямом преобразовании солнечного света в электрический ток. Наряду с ними используются и другие солнечные электростанции, имеющие свои плюсы и минусы, с помощью которых электричество может производиться в промышленных объемах. В отличие от фотоэлементов, процесс преобразования включает в себя несколько этапов. Вначале энергия Солнца превращается в тепловую и нагревает рабочую жидкость, используемую в качестве теплоносителя. Далее, эта жидкость превращается в пар, поступающий в парогенератор и обеспечивающий вращение вала. Таким образом, получается электроэнергия, вырабатываемая примерно по такой же схеме, как на тепловых или атомных электростанциях.
Принцип работы солнечной электростанции является одинаковым для всех типов данных устройств. Они различаются между собой лишь разновидностями теплоприемников, где концентрируется солнечная энергия. В результате концентрации возникает тепло с температурой 200-1000 градусов, в зависимости от конструкции. Далее в работу включается паровая или газовая турбина, вращающаяся под действием полученного пара. Излишки тепловой энергии применяются в других производственных процессах или используются в системах отопления.
Каждая солнечная электростанция оборудована следящей системой, обеспечивающей максимальную концентрацию солнечных лучей в течение всего светового дня. Конструктивно типы солнечных электростанций могут быть башенными, тарельчатыми, параболическими, солнечно-вакуумными и другими. Для того чтобы понять, как они функционируют, рассмотрим их более подробно.
Автономные солнечные электростанции
Автономные СЭС предназначены для полностью автономного питания объектов при отсутствии электроснабжения от сети. В состав автономной системы электроснабжения входят:
• инвертор; • аккумулятор для заряда; • солнечная панель; • контроллер; • фурнитура для электрооборудования и тому подобное.
Автономные солнечные электростанции — это отличное решение, если вам нужно обеспечить полноценное функционирование:
• удаленной дачи; • небольшого загородного домика; • кемпинга или зоны отдыха; • фермы или иного сельскохозяйственного объекта.
Преимущества автономных солнечных электростанций:
• чистая и безопасная электроэнергия; • полная независимость от центрального электроснабжения; • быстро монтируются и простые в использовании; • позволяют контролировать необходимый уровень потребления электроэнергии.
Недостатки автономных солнечных электростанций:
• не подходят для тех, кто планирует воспользоваться преимуществами «зеленого тарифа»; • комплектуются аккумуляторными батареями, которые требуют периодической замены и значительно увеличивают стоимость СЭС; • ограниченный ресурс (при уменьшении солнечной активности); • требуют аварийного источника питания; • высокая стоимость оборудования СЭС.
Существует много моделей автономных СЭС для дома, в зависимости от мощности и функциональных возможностей.
Действующее законодательство
В России в конце 2019 года вышел закон, который ввел понятие «объект микрогенерации». Из определения следует, что это объект, присоединенный к сетям напряжением ниже 1000 вольт, имеющий возможность выдавать электроэнергию в общую сеть в объеме, не превышающем величину технологического присоединения. И максимум 15 кВт. А также использующий для выдачи электроэнергии в сеть собственную электросетевую инфраструктуру, а не общую.
Строго говоря, солнечные панели, установленные на крыше среднестатистического частного дома, могут быть объектом микрогенерации.
Также в марте 2020 года в развитие этого закона вышло постановление правительства РФ, уточняющее некоторые вопросы.
Что законодательство нам дает:
- Появляется возможность продавать излишки выработанной электроэнергии в общую сеть по договору купли-продажи с энергосбытовой организацией.
- Появляется возможность сальдировать в рамках одного месяца объемы потребления из сети и объемы выдачи в сеть.
Что касается продажи электроэнергии сбытовой организации: излишки можно продать по цене, не превышающей средневзвешенную цену электрической энергии на оптовом рынке — это порядка 0,8—1,3 Р за киловатт-час без НДС. Это ниже рассчитанной нами средней стоимости выработки электроэнергии солнечными станциями, то есть продажу электроэнергии в сеть вряд ли можно назвать выгодной.
А вот сальдирование предоставляет возможность использовать общую сеть как некий аккумулятор. Когда нам не нужна выработанная электроэнергия, она отдается в сеть, а когда нужна — забирается из сети в том же объеме бесплатно.
Это очень важный момент, так как все расчеты экономической эффективности солнечных панелей производятся исходя из условия, что каждый выработанный киловатт-час на протяжении всего жизненного цикла станции был потреблен и ни одного не ушло «в землю». Без сальдирования в условиях частного дома это было бы невозможно: нам приходится покидать дом, чтобы сходить в магазин, в гости, в кафе, съездить в отпуск, а солнце светит и светит. Сальдирование позволяет накопить весь объем выработанной солнечными панелями электроэнергии и использовать его в удобное для вас время в рамках одного месяца.
Оба механизма — купля-продажа и сальдирование — работают вместе. Итоги формируются по итогам расчетного месяца. Если ваше совокупное месячное потребление — 1000 кВт·ч, а станция выработала 800 кВт·ч, то разницу, 200 кВт·ч, вы приобретете по тарифу из сети. Если потребление было 800 кВт·ч, а станция выработала 1000 кВт·ч, то разницу у вас купит энергосбытовая компания по ценам оптового рынка.
Если у вас установлен двухтарифный или многотарифный счетчик, то объемы выработки и потребления определяются и сальдируются в рамках соответствующих зон суток — день/ночь, пик/полупик/ночь. То есть в таком случае дневную выработку станции нельзя сальдировать с ночным потреблением из сети — только с дневным.
Вот что необходимо сделать, чтобы все это заработало:
- Выполнить технологическое присоединение солнечной станции к объектам сетевой организации. Можно сделать это вместе с присоединением дома к сети или отдельно, если дом уже присоединен. Как подавать заявку на технологическое присоединение, мы уже писали.
- Заключить договор купли-продажи электрической энергии с энергосбытовой организацией — с той же, что вас обслуживает. Сделать это можно после или во время процедуры технологического присоединения, обратившись любым удобным способом.
СЭС с параболическими концентраторами
Электрогенерирующая способность таких СЭС тоже связана с отражательной способностью зеркал. Вместо тарелок в основе конструкции находится параболический цилиндр длиной до 50 м. Его составляют из отдельных модулей. В фокусе такого отражателя расположена трубка, предназначенная для движения жидкого теплоносителя. Чаще всего эту роль выполняет масло. Как работает солнечная электростанция:
- При прохождении всего пути теплоноситель нагревается, передавая свое тепло воде.
- Она преобразуется в пар, который направляют на турбогенератор.
- Устройство преобразует полученную энергию в электричество.
Девять подобных СЭС были построены еще в 80-х годах в Калифорнии. Суммарная мощность установок составила 354 МВт. Но на практике оказалось, что эффективность таких СЭС значительно ниже, чем тарельчатого и башенного типа.
Несмотря на это, гелиостанции с параболическими концентраторами продолжают строиться. Так, в 2016 году подобную установку ввели в эксплуатацию в Марокко. Здесь ее расположили в пустыне Сахара, рядом с Касабланкой. Мощность установки достигла 500 МВт. Ее обеспечивают 0,5 млн зеркал длиной 12 м.
Преимущества и недостатки
Комплект панелей, обеспечивающих освещение и работу электроприборов, отличается такими преимуществами:
- высоким качеством. Любой производитель дает долгую гарантию на свою продукцию, так как фотоэлементы системы изготовлены из высококачественного кремния и износоустойчивы. Согласно статистическим данным, панели для обеспечения освещения в среднем работают 26 лет;
- надежностью. Вы будете уверены в том, что при правильной установке в солнечные дни комплект батарей накопит достаточно энергии для освещения или работы приборов. Даже в пасмурные дни энергия солнца все равно будет накапливаться, но в меньшем количестве. А благодаря аккумулятору ее можно будет использовать в любое время;
- неисчерпаемостью ресурсов. По сравнению с дизельным генератором, солнечные комплекты не нужно заправлять топливом, так как солнечная радиация, которую они преобразовывают, неисчерпаема;
- модульностью. Модули системы практически не нужно обслуживать — достаточно протирать их от пыли и убирать снег;
- простым подключением. Каждый владелец таких комплектов, обеспечивающих работу приборов и освещение дома, может при желании увеличить их мощность, докупив и установив дополнительные модули;
- автономностью. Владельцы батарей не зависят от неполадок в электросети, так как сами обеспечивают себя энергией;
- бесшумностью (по сравнению с ветрогенераторами).
Комплект солнечной электростанции пиковой мощности 3 кВт
Однако комплекты по преобразованию солнечной энергии имеют и недостатки, среди которых:
- высокая стоимость. Несмотря на то что солнечные панели окупаются в течение нескольких лет, не каждый готов на большие единоразовые траты;
- зависимость от солнечной энергии. Фотоэлементы не смогут аккумулировать энергию ночью и будут мало накапливать ее в пасмурные дни;
- максимальный КПД обеспечивается лишь при определенном угле попадания солнечных лучей — они должны попадать на кремниевые пластины под углом 90 градусов. Так как положение Солнца в течение дня меняется, максимальный КПД все время даже в солнечные дни невозможен.
Преимущества
Для крупных промышленных объектов расположение на своей территории источников электроэнергии, использующих излучение Солнца, выгодно по многим причинам.
Во-первых, это позволяет избежать сбоев в производстве, возникающих из-за исчезновения энергии в основной сети. Так как сейчас многие циклы автоматизированы и контролируются искусственным интеллектом, внезапное исчезновение питания может принести заводу огромные убытки.
До повсеместного распространения промышленных солнечных батарей в качестве запасного источника энергии устанавливали дизельные генераторы. Но с момента отключения основной сети до запуска генератора проходит около минуты. А это неприемлемо при современных циклах производства. Поэтому использование установок, которые преобразуют солнечный свет, является более надежным.
Кроме того, в большинстве случаев на производственном объекте есть довольно большая и никак не используемая крыша. Монтаж на ней конструкции, которая улавливает и перерабатывает излучение Солнца, – хороший вариант эксплуатации этой поверхности.
Установка солнечных батарей – самый выгодный способ получения необходимой энергии для владельцев фермерских хозяйств и прочих бизнес-объектов, значительно удаленных от общей сети. Размещение и приобретение комплекта для переработки света Солнца обойдется дешевле, чем прокладка новой линии электропередачи.
Фотоэлектрические электростанции
Более широкую известность, в том числе и среди хозяев частного сектора, получили фотоэлектрические электростанции. Основным конструктивным элементом этих установок являются солнечные панели на основе кремния или других полупроводниковых материалов. Их физические свойства позволяют получать электрический ток путем преобразования солнечной энергии. В настоящее время средняя производительность батарей составляет примерно 120 ватт с 1 квадратного метра солнечного элемента.
Стабильная работа фотоэлектрических преобразователей заявляется многими производителями, а срок службы, при соблюдении правил эксплуатации, ничем не ограничивается. В своей работе они используют энергию не только прямых, но и рассеянных солнечных лучей. Конструкции модульного типа дают возможность создать электроустановку с требуемой мощностью для конкретного объекта. Существенным недостатком таких устройств считается их довольно низкий КПД, составляющий в среднем 15%, и высокая стоимость комплектующих изделий.
Солнечные батареи могут быть дополнены следящим или фиксированным фотоприемником, с концентратором солнечных лучей или без него. Эти дополнительные устройства имеют свои конструктивные особенности, технические характеристики и обладают различной эффективностью. С целью повышения производительности установок рекомендуется использование концентраторов, увеличивающих плотность радиационного потока.
Эффективность фотоэлектрических станций повышается за счет систем слежения за движением солнца. Их применение позволяет сократить площадь фотоэлементов в 1,7 раза, сохраняя при этом первоначальную мощность.
В последнее время солнечные батареи становятся все более привлекательными для владельцев частного сектора. Их установка делает хозяев дач и загородных домов полностью независимыми от централизованного электроснабжения. Конструкция таких электростанций несложная и вполне может быть собрана самостоятельно.
Она состоит из следующих элементов:
- Солнечные панели – фотоэлектрические преобразователи. Их основой служит моно- или поликристаллический кремний. В первом случае КПД составляет 17-18%, во втором – не более 15%. Важнейшей характеристикой является полезная мощность, определяемая выходным током и напряжением. На эти параметры влияет интенсивность светового потока, улавливаемого батареей. Для увеличения выходных параметров применяются соединения модулей по параллельной и последовательной схеме. В первом случае возрастает выходной ток, во втором – выходное напряжение. Каждый элемент батареи шунтируется диодами, защищающими от выхода из строя в случае затемнения одного из них.
- Аккумулятор для солнечной электростанции, в котором изначально накапливается вся полученная энергия. Заряд батареи возможен лишь тогда, когда приложенный потенциал превышает напряжение аккумулятора. Величина нагрузочного тока АКБ должна обеспечивать необходимый зарядный ток. С наступлением темноты или уменьшением солнечного света днем, заряд начинает поступать к потребителям. То есть аккумулятор постоянно работает в режиме зарядки и разрядки.
- Контроллер обеспечивает управление циклическими процессами заряда-разряда. Он отключает батарею при полной зарядке и включает ее в случае сильного разряда.
- Инвертор для солнечной электростанции преобразует постоянное напряжение АКБ в переменный ток, обеспечивая работу потребителей, используемых в быту. Без инвертора питание подается лишь к приемникам, работающим от постоянного напряжения. Это мелкие портативные устройства, светодиодные лампы и т.д.