Можно ли использовать светодиоды для солнечных панелей?
Светодиодная солнечная батарея является чистым вымыслом. Из светодиодов собрать даже небольшую солнечную микропанель практически невозможно. Вернее, создать можно, но стоит ли? С помощью солнечного света вполне реально получить на светодиоде около 1,5 вольта напряжения, но при этом сила сгенерированного тока очень мала, а для его генерации требуется только очень сильное солнце. И еще – светодиод при подаче на него напряжения сам выделяет лучевую энергию, то есть светится. А значит, те его собратья, на которые попал солнечный свет большей силы, будут вырабатывать электричество, которое этот светодиод сам же и будет потреблять. Все правильно и просто. И разобраться при этом в том, какие светодиоды производят, а какие потребляют энергию, просто невозможно. Даже если использовать десятки тысяч светодиодов – а это непрактично и неэкономично – толку никакого не будет.
Устройство и принцип работы
За описание механизма фотоэлектрического эффекта Альберт Эйнштейн получил нобелевскую премию. А первое преобразование солнечных лучей в электричество стало возможным еще в середине девятнадцатого века, когда француз Александр Беккерель открыл это явление. Правда понадобилось еще 50 лет, чтобы русский ученый Александр Столетов в своей лаборатории смог получить практический результат.
Первый солнечный фотоэлемент из кристаллического кремния разработала компания Bell Laboratories в 1954 году. Именно с этого момента и взяла старт технология, благодаря которой рассчитывают полностью убрать из обихода углеродное топливо. Причем перспективы поистине огромны. С квадратного метра земной поверхности за день можно получить 4.2 кВт/час солнечной энергии. Что эквивалентно расходу одного барреля нефти.
Одна фотоэлектрическая ячейка производит ток, который измеряется в миллиамперах. И чтобы сделать солнечную панель, вырабатывающую электроэнергию достаточной мощности, такие звенья соединяют в модульную конструкцию. Целые массивы, из разного количества фотоэлементов, и составляют солнечную батарею.
Фотоэлектрическая ячейкаИсточник remont-system.ru
Из-за сложности и дороговизны изготовления, технология изначально нашла применение только в космической отрасли. Но когда придумали способ производить фотоэлементы из более дешевых материалов, то солнечная батарея пришла и в наши дома. Сначала для портативных калькуляторов, затем для фотоаппаратов и небольших светильников.
Вскоре технология перекочевала из космоса и на землю. Начались создаваться геоэлектрические установки, которые закреплялись на крышах домов. Благодаря такому новшеству, эти здания отключались от проводного электричества и становились автономными. И сейчас уже не редкость встретить многокилометровые поля с установленными на них кремниевыми панелями. Такие электростанции способны обеспечить электроэнергией целые города.
Сложный фотоэлектрический эффект оказался чрезвычайно прост. Но это на сегодняшний день. Ведь еще 50 лет назад не было технологии, позволяющей получать материалы с неустойчивой атомной структурой. А именно это свойство вещества и является ключом к получению энергии. Когда отдельные неустойчивые атомы бомбардируются фотонами света, то из их орбит выбиваются электроны. Вот последние и представляют из себя источник тока.
ПолупроводникИсточник rusinfo.info
Открытие полупроводников выступило огромным скачком в развитии отрасли получения альтернативных источников электроэнергии. Эти материалы имеют атомы, у которых или слишком много электронов, или очень мало. Деление на катод (излишек) и анод (нехватка) и позволяет при обстреле фотонами света выбивать частицы из атомов с избытком электронов.
Таким способом катод передает их на свободные орбиты аноду. А если создать нагрузку, то электроны возвращаются на свои первоначальные места. Таким образом движение частиц в замкнутом контуре создает электрический ток. А привычное магнитное поле в громоздких электрических генераторах заменяется на поток частиц солнечного излучения.
Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти
Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью — найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.
Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний
Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.
Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные — из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.
Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы — как и качественные устройства, их можно купить на зарубежных торговых площадках
Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.
Можно ли заменить фотоэлектрические пластины чем-то другим
Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.
Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов
Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.
Расчёт размера батареи
Размер батареи зависит от требуемой мощности и габаритов источников тока
При выборе последних вы обязательно обратите внимание на предлагаемое разнообразие фотоэлементов. Для использования в самодельных устройствах удобнее всего выбирать солнечные ячейки среднего размера
Например, рассчитанные на выходное напряжение 0.5 В и силу тока до 3 А поликристаллические панели размером 3×6 дюймов.
При изготовлении солнечной батареи они будут последовательно соединяться в блоки по 30 шт, что позволит получить требуемое для зарядки автомобильной батареи напряжение 13–14 В (учитывая потери). Максимальная мощность одного такого блока составляет 15 В × 3 А = 45 Вт. Исходя из этого значения, будет нетрудно подсчитать, сколько элементов понадобится для постройки солнечной панели заданной мощности и определить её размеры. Например, для постройки 180-ваттного солнечного электрического коллектора понадобится 120 фотоэлементов общей площадью 2160 кв. дюймов (1.4 кв.м).
Шаг 5: Выбор инвертора
Солнечные батареи получают солнечные лучи и конвертируют их в электричество, они являются источниками постоянного тока (DC), также как аккумуляторная батарея, а нам для подключения розеток требуется переменный ток с напряжением 220В. Постоянный ток (DC) преобразуется в переменный ток (AC) через устройство под названием инвертор.
Виды волн переменного тока на выходе инвертора:
- Прямоугольная волна – меандр;
- Модифицированная синусоида;
- Чистая синусоида.
Инвертор прямоугольной волны дешевле всех, но подходит не для всех приборов. Инвертор модифицированной синусоиды тоже не предназначен для обеспечения электричеством приборов с электромагнитными или ёмкостными компонентами, типа: микроволновых печей; холодильников; различных типов электродвигателей. Инверторы с модифицированной синусоидой работают с меньшей эффективностью, чем инверторы с чистой синусоидой.
Мы рекомендуем выбирать инверторы с чистой синусоидой.
Параметры инвертора:
- Мощность инвертора должна быть равной или больше, чем мощность всех приборов нагрузки, включенных одновременно;
- Если есть приборы с пусковыми токами (электродвигатели), нельзя чтобы она превышала максимальную мощность инвертора с учетом других электропотребителей;
- Предположим, что у нас будет: телевизор (50Вт) + вентилятор (50Вт) + настольная лампа (10Вт) = 110Вт;
- Чтобы иметь запас по мощности, выбираем инвертор от 150Вт. Так как наша система 12В, мы должны выбрать инвертор постоянного тока 12В в 220В/50Гц переменного тока с чистой синусоидой.
Примечание: Такая техника как стиральная машина, холодильник, фен, пылесос и т.д. имеют начальную потребляемую мощность во много раз больше, чем их нормальная рабочая мощность. Как правило, это вызвано наличием электрических двигателей или конденсаторов в таких приборах
Это должно быть принято во внимание при выборе мощности преобразователя (инвертора).
Расчет и проект
Перед тем, как удастся подключить солнечную панель в своем доме, придется проделать немало работы. И прежде всего нужно взяться за расчеты. Желание отказаться от проводного электричества и обзавестись собственной электростанцией есть у каждого. Но нужно хорошо проанализировать возможность реализации такой затеи.
Солнечная электростанция для домаИсточник portal-kolomna.ru
Сначала изучаем счет на оплату от поставщика электроэнергии. В нем указано, за сколько киловатт требуется погасить задолженность. Это число нужно делить на 30 (количество дней в месяце). Так можно узнать среднюю суточную потребность в электричестве. И предположим, что у нас получилось 10 кВт в сутки.
В идеальных условиях понадобится батарея мощностью 1,5 кВт, чтобы закрыть нашу потребность. Но придется учесть все враждебные обстоятельства. А их немало. Во-первых, батарея будет вырабатывать электричество только днем. Причем наибольшая эффективность приходится на время от девяти утра до четырех пополудни. А это только 70 % генерации от суточной нормы.
Во-вторых, даже легкая дымка в атмосфере снизит токоотдачу в 2-3 раза. А сплошная облачность заставит производительность упасть сразу в 15-20 раз. Поэтому мощность батареи уже нужно увеличивать, как минимум на 40 %. Но это еще не все.
Зависимость от погодных условийИсточник kosmossolar.com
Для накопления электричества понадобится объемный аккумулятор и не менее мощный преобразователь напряжения. Без последнего никак не обойтись, поскольку все бытовые приборы запитываются от тока напряжением 220 В. Но накопление и трасформация неизбежно сопровождаются потерями. Эксперты утверждают, что они доходят до 30 %. Поэтому к ранее прибавленным 40 % плюсуем и это число. И в итоге уже понадобится солнечная батарея от 2,5 до 3 кВт мощностью.
Далее вычисляем количество аккумуляторов. Причем нужны низковольтные, рассчитанные на напряжение в 12, 24 и 48 Вольт
Если использовать обычный автомобильный вариант (12 В), то принимая во внимание суточную норму и неизбежные потери, их понадобится 6 штук. Конечно можно взять лучшие, на 48 В, но это только увеличит общую стоимость всей установки
Сразу нужно развеять миф, об использовании солнечной батареи для обогрева дома в зимний период. Если к произведенным расчетам добавить вычисления на установку электрических ТЭНов, то в итоге понадобится очень серьезная гелиоэлектрическая станция. И ее самоокупаемости, а тем более экономии, придется ждать долгие годы.
Коттеджный городок на солнечной энергииИсточник panasonic.com
Что касается размеров батареи, то они опять же зависят от ее мощности, а также от вида фотоэлемента. Если брать элементы с поликристаллическими ячейками, которые выдают напряжение 0,5 В, а силу тока 3 А, то такая мини панель будет со сторонами 3 на 6 дюймов. Как правило, для зарядки аккумулятора их понадобится соединять в блоки по 30 штук. Поскольку мощность одного такого модуля составляет 45 Вт, то уже нетрудно подсчитать необходимое количество блоков для создания необходимой мощности, чтобы закрыть суточные потребности.
Конструкция и принцип работы солнечной батареи
Прежде чем начать монтаж системы преобразования света в электроэнергию, нужно понять общие принципы ее функционирования.
Все существующие, на текущий момент солнечные батареи построены на основе полупроводниковых кристаллов. Кванты света, падая на них, лишаются свободных электронов и протонов, которые впоследствии, через PN-переход, разделяются и отправляются уже по проводам дальше.
Ежесекундно, на каждый метр площади поверхности Земли падает солнечный свет, эквивалентный более чем 100 Вт электроэнергии. Речь идет о тех периодах, когда небо затянуто облаками. При ярком солнечном свете этот показатель, конечно, выше.
Один из вариантов использования солнечных батарей и обычной линии
Для практического домашнего использования, кванты светового потока преобразуются в электричество посредством полупроводников. Генерируемая мощность последних зависит от материала солнечной батареи и ее площади.
Затем, постоянный ток от них поступает на инвертор и контроллер, первый из которых преобразует его в переменный ток, повышая значения напряжения до применяемых в условиях быта. Второй заряжает аккумулятор, который будет использоваться в периоды снижения освещенности.
Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти
Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью — найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.
Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний
Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.
Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные — из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.
Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы — как и качественные устройства, их можно купить на зарубежных торговых площадках
Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.
Можно ли заменить фотоэлектрические пластины чем-то другим
Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.
Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов
Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.
К вопросу о возможности использования электрических солнечных панелей в целях отопления
Как вы уже могли, наверное, заметить, словосочетание «солнечная батарея» или «солнечная панель» постоянно упоминается в контексте устройства электрической природы. Сделано это неслучайно, поскольку точно так же нередко называют и другие солнечные панели или батареи — геоколлекторы.
Несколько гелиоколлекторов смогут обеспечить дом горячей водой и возьмут на себя часть расходов по отоплению
Возможность прямого преобразования энергии солнечного излучения непосредственно в тепло позволяет значительно повысить производительность таких установок. Так, современные геоколлекторы с селективным покрытием вакуумных трубок имеют КПД 70–80% и вполне могут использоваться как в системах горячего водоснабжения, так и для обогрева помещений.
Конструкция солнечного коллектора с вакуумными трубками позволяет минимизировать теплопередачу во внешнюю среду
Возвращаясь к вопросу о том, можно ли использовать электрическую солнечную панель для питания отопительных приборов, давайте рассмотрим, сколько тепла понадобится, например, для дома в 70 кв. метров. Исходя из стандартных рекомендаций в 100 Вт тепла на 1 кв. м площади помещения, получим затраты 7кВт энергии в час или примерно 70 кВт×ч в сутки (обогревающие приборы ведь не будут включены постоянно).
То есть 10 самодельных батарей общей площадью 52 кв.м. Представляете себе махину шириной, скажем, 4 м и длиной более 13 м, а также блок из 12-вольтовых аккумуляторов суммарной ёмкостью 7200 ампер-часов? Такая система не сможет даже выйти на самоокупаемость до того, как будет выработан ресурс аккумуляторных батарей. Как видите, говорить о целесообразности применения солнечных батарей в целях отопления пока ещё слишком рано.
Идеи из подручных материалов
Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.
Солнечная батарея из фольги
Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.
Как сделать солнечную батарею из фольги?
Нам понадобится:
- 2 «крокодильчика»;
- медная фольга;
- мультиметр;
- соль;
- пустая пластиковая бутылка без горлышка;
- электрическая печь;
- дрель.
Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.
Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.
Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.
Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.
Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.
Солнечная батарея из транзисторов
У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.
Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.
Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.
Солнечная батарея из диодов
Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.
Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.
Солнечная батарея из пивных банок
Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.
Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки
Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом
Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.
Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.
Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.
Расчеты и проект
Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.
Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.
Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.
Солнечные батареи из подручных средств
При изготовлении самодельных солнечных батарей можно использовать:
- транзисторы, в которых имеется кремниевый полупроводниковый элемент (если срезать крышку, пластина внутри легко выполнит роль фотоэлемента.);
- диоды;
- пивные алюминиевые банки;
- калькуляторы;
- фонарики на солнечных батареях.
Светильник
Из вышедших из строя готовых светильников на солнечных батареях вполне можно собрать новый, оригинальный и более долговечный.
Для работы понадобятся:
- солнечные модули из старых светильников (предварительно проверить их тестером на работоспособность);
- аккумулятор;
- светодиоды;
- многожильный провод (лучше медный);
- резисторы;
- транзисторы;
- диоды – или готовая электронная плата.
Для корпуса светильника подойдет обычная стеклянная банка с закручивающейся крышкой
- В подготовленном листе влагостойкой фанеры сделать отверстие под крышку банки. На фанеру наклеить двусторонним скотчем модули в 2 ряда, спаять их.
- Выходное напряжение должно быть 4,4 В. Светодиоды соединить с платой. В разрыв питания светодиодов можно подключить датчик движения, срабатывающий на проходящих людей, и фотоэлемент, тогда светильник будет включаться сам при наступлении темноты и выключаться с рассветом.
- В крышке сделать два отверстия для проводов. В корпусе разместить электронику. Позаботиться о герметичности конструкции.
Фонарь
На дачном или садовом участке хочется, чтобы и ночью было освещение. Готовые фонари китайского производства часто не удовлетворяют запросам даже самого неприхотливого потребителя:
- Фонарь на солнечных батареях легко можно изготовить своими руками, используя готовые солнечные модули и подручные материалы. В качестве плафона подойдут рюмка, стакан, бутылка, банка.
- В донышке просверлить отверстие 6-8 мм. Вырезать основание из пластика ПВХ. К солнечной батарее (панели), состоящей из 4 фотоэлементов, припаять провода.
- До закрепления панели к основанию нужно проверить ее работоспособность тестером.
- Приклеить панель к основанию герметиком или водостойким клеем. Загерметизировать отверстия с выведенными проводами.
- Из пластиковой трубки диаметром около 1 см сделать основание для светодиодов. Приклеить их, ориентируясь на центр плафона. Припаять провода и закрепить их вместе с проводами от панели. Установить плафон. Припаять к его проводам плату электроники. В качестве ножки для фонарика можно использовать обрезок пластиковой трубы.
Зарядка для телефона
Довольно просто сделать зарядку для телефона. Взять 4 полупроводника (фотоэлемента) из калькулятора или фонарика, работающего на солнечных батареях. В таких приборах источником питания служат аморфные фотоэлементы, размещенные на пластинке из стекла. Один такой блок дает 1,5 вольта. Соединить их между собой последовательно. У плюсового выхода припаять диод Шоттки.
В цепь после батареи поставить линейный стабилизатор на 5 Вольт и USB разъем. Термоклеем покрыть грани модулей.
При наличии свободного времени и желании, своими руками можно сделать не только простенький прибор на солнечных батареях, но и серьезную конструкцию, которая будет являться альтернативным источником энергии для дачи или собственного дома и экономить на расходах по оплате счетов за электроэнергию.
Преимущества и недостатки этого вида энергии
Из преимуществ можно выделить следующие:
Наше Солнце – экологически чистый источник энергии, который не способствует загрязнению окружающей среды. Солнечные батареи не выбрасывают в окружающую среду различные вредные отходы.
Солнечная энергия неисчерпаема (естественно, пока Солнце живо, но это ещё на миллиарды лет вперёд). Из этого следует, что солнечной энергии вам точно хватило бы на всю жизнь.
После того, как вы осуществите грамотный монтаж солнечных батарей в дальнейшем вам не потребуется их часто обслуживать. Всё что надо – один два раза в год проводить профилактический осмотр.
Внушительный срок службы солнечных батарей. Этот срок начинается от 25-ти лет. Также стоит подметить, что даже в прошествии данного времени они не потеряют в эксплуатационных характеристиках.
Установка солнечных батарей может субсидироваться государством. К примеру это активно происходит в Австралии, Франции, Израиле. Во Франции и вовсе возвращается 60% стоимости солнечных панелей.
Из недостатков можно выделить следующие:
Пока что солнечные батареи не выдерживают конкуренции, к примеру, если требуется вырабатывать большое количество электроэнергии. Это удачней получается у нефтевой и ядерной промышленности.
Производство электроэнергии напрямую зависит от погодных условий. Естественно, когда за окном солнечно – ваши солнечные батареи будут работать на 100% мощности. Когда же будет пасмурный день – этот показатель будет падать в разы.
Для производства большого объёма энергии солнечным батареям требуется большая площадь.
Как можно видеть, у данного источника энергии плюсов всё равно больше чем минусов, а минусы не такие страшные как казалось бы.
Заряжаем телефон от солнца
Теперь мы расскажем, как самому собрать солнечную батарею, способную заряжать мобильный телефон. Изготавливая батарею, состоящую из отдельных частей, основанных на монокристаллическом кремнии, не исключены проблемы при их пайке. Если вы не уверены, что сможете все сделать самостоятельно, лучше выберите уже изготовленные модули. Хорошо, если они будут состоять из десяти монокристаллических элементов, подходить к размеру корпуса вашего мобильника и обладать напряжением пять Вольт. Солнечные элементы могут присутствовать и в калькуляторах, питаемых от солнца. В этих приборах для счета чисел используют в основном аморфные элементы, где слой полупроводника расположен на маленькой пластине из стекла. Учитывая, что модули такого типа дают около полутора вольт, нам понадобится четыре штуки с последовательным соединением. Не забываем к положительному выводу батареи подпаять диод, который будет использоваться как вентиль, не давая аккумулятору тратить заряд через солнечную батарею. Достать диод можно с платы фонаря. Дабы наше изобретение служило более надежно, заливаем термоклеем поперечные грани модулей.
Обзор более сложной модели
Батарейка или гальванический элемент – это химический источник электрического тока. Все батарейки, продающиеся в магазинах, по сути, имеют одинаковую конструкцию. В них используются два электрода из разного состава. Основным элементом для отрицательного вывода (анода) солевых и щелочных батареек является цинк, а для их положительного (катода) – марганец. Катод литиевых батареек изготавливается из лития, а для анода используются самые различные материалы.
Между электродами батареек расположен электролит. Состав его различен: для солевых батареек, имеющих самый низкий ресурс, используется хлорид аммония. Для изготовления щелочных батареек применяют гидроксид калия, а в литиевых батарейках используется органический электролит.
При взаимодействии электролита с анодом вблизи него образуется избыток электронов, создающий разность потенциалов между электродами. При замыкании электрической цепи количество электронов за счет химической реакции постоянно пополняется, и батарейка поддерживает протекание тока через нагрузку. При этом материал анода постепенно коррозирует и разрушается. При полной его выработке ресурс батарейки оказывается исчерпан.
Несмотря на то, что состав батареек сбалансирован производителями для обеспечения долгой и стабильной их работы, изготовить элемент питания можно и самому. Рассмотрим несколько способов, как можно сделать батарейку своими руками.
https://youtube.com/watch?v=qIQfvk5j7C8
Проектирование
Нужно произвести правильный расчет мощности панелей, инвертора и емкости аккумулятора. Для этого необходимо определиться, для чего вам нужна солнечная батарея? Если как источник резервного питания, то рассчитайте, какое время резервной работы должна обеспечивать станция, и какое оборудование будет подключено к резервной сети.
Если нужен основной источник энергии, вы должны посчитать, какое количество времени всего в день работает каждый из ваших электроприборов, затем умножить число часов на их мощность. В результате вы узнаете, сколько кВт/ч энергии в день они потребляют. После чего добавьте про запас 20–50%, т. е. умножить количество кВт/ч на 1,2–1,5. Если разделить это число на напряжение АКБ (12 или 24 В) – вы получите емкость (А/ч).
Количество элементов панели подбирается исходя из их мощности и среднесуточного количества часов, когда в ваших широтах светит солнце. То есть если вы за день потребляете 1 кВт/ч, а солнечный день длится в среднем 10 часов, при этом максимально яркий свет падает в течение 4–5 часов, значит:
P=W/(Hs*k),
где P – общая мощность батареи, W – потребляемая мощность, Hs – количество солнечных часов, k – коэффициент максимальной яркости света, т. е. если из 10 часов солнце светит 4 часа очень ярко, а остальное время идет на спад, то он равен 4/10 или 0,4.
Инвертор подбирается исходя из количества работающей техники. В квартирах и домах на распределительных щитках установлены вводные автоматы на 16 А, это примерно 3.5 кВт, значит и инвертора такой мощности вам хватит с головой.
Последний шаг это монтаж всей установки. Самое сложное – это найти оптимальный угол наклона батареи. Нужно опытным путем определить угол, при котором наибольшую продолжительность времени солнечные лучи будут максимально приближены к перпендикулярному положению.