Рекуперативное торможение электрических машин
Рекуперативное торможение электродвигателя характеризуется переводом двигателя в генераторный режим. При этом вырабатываемая электроэнергия возвращается в сеть или используется для подзарядки аккумулятора.
Этот режим широко применяется в электровозах, электричках, трамваях и троллейбусах. В момент торможения, вырабатываемая электроэнергия возвращается в электрическую сеть.
Режим рекуперативного торможения применяется для подзарядки аккумуляторов в гибридных автомобилях, электромобилях, электросамокатах, электровелосипедах.
Этот режим является наиболее экономичным и возможен при условии: если частота вращения ротора превышает частоту вращения холостого хода. Это условие выполняется, когда ЭДС электродвигателя превышает напряжение питающей сети. А ток якоря и магнитный поток меняют свое направление. Электрическая машина переходит в генераторный режим, возникает момент торможения.
На рисунке представлена схема торможения тягового двигателя а) с независимым возбуждением и стабилизирующим сопротивлением, б) с противовозбуждением возбудителя.
Схема подключения электродвигателя к УПП
Для того, чтобы подключить устройство плавного пуска к электродвигателю и питающей сети следует руководствоваться инструкцией на данный тип прибора, там будут указаны все важные аспекты при подключении: последовательность цепи, выводы заземления и нейтрали, а также правильная наладка пуска, разгона и торможения. Но в целом, существуют стандартные способы подключения, которые подходят для большинства устройств плавного пуска.
Каждое УПП имеет контакта на входе и столько же на выходе для подключения фаз, систему управления пуском и остановкой (кнопки ПУСК, СТОП), другие кнопки и контакты управления. К устройству подводят питающие кабели на входные клеммы (обычно это обозначения L1, L2, L3), а от выводных клемм (обозначения T1, T2, T3) подключают электродвигатель
При этом важно подключать УПП к сети через вводной автомат защиты и использовать при подключении двигателя к устройству плавного пуска и самого УПП к сети кабели с номинальным сечением, соответствующем предельному значению тока двигателя
Некоторые устройства могут управляться не только с переключателей и устройств управления на самом приборе, но и через контакты реле или контроллера – это усложняет схему подключения прибора, но расширяет его возможности.
Смотрите это видео на YouTube
Схемы конденсаторного торможения электродвигателей
Конденсаторное торможение асинхронных двигателей
На рисунке приведена схема включения двигателя при конденсаторном торможении. Параллельно обмотке статора включают конденсаторы, обычно соединенные по схеме треугольника.
При отключении двигателя от сети токи разряда конденсаторов создают магнитное поле, вращающееся с низкой угловой скоростью. Машина переходит в режим генераторного торможения, частота вращения снижается до значения, соответствующего частоте вращения возбужденного поля. Во время разряда конденсаторов появляется большой тормозной момент, который с уменьшением частоты вращения падает.
В начале торможения происходит быстрое поглощение запасенной ротором кинетической энергии при малом тормозном пути. Торможение резкое, ударные моменты достигают 7 Мном. Значение пика тормозного тока при самых больших значениях емкости не превышает пускового тока.
С ростом емкости конденсаторов тормозной момент увеличивается и торможение длится до более низкой частоты вращения. Исследования показали, что оптимальное значение емкости лежит в пределах 4 — 6 Сном. Конденсаторное торможение прекращается при частоте вращения 30 — 40% номинальной, когда частота вращения ротора становится равной частоте вращения поля статора от возникающих в статоре свободных токов. При этом в процессе торможения поглощается более 3/4 кинетической энергии, запасенной приводом.
Для полной остановки двигателя по схеме на рисунке 1,а необходимо наличие на валу момента сопротивления. Описанная схема выгодно отличается отсутствием переключающих аппаратов, простотой обслуживания, надежностью и экономичностью.
При глухом подключении конденсаторов параллельно двигателю можно применять только такие типы конденсаторов, которые рассчитаны на длительную работу в цепи переменного тока.
Если торможение осуществляется по схеме рисунке 1 с подключением конденсаторов после отключения двигателя от сети, возможно применение более дешевых и малогабаритных металлобумажных конденсаторов типов МБГП и МБГО, предназначенных для работы в цепях постоянного и пульсирующего тока, а также сухих полярных электролитических конденсаторов (КЭ, КЭГ и др.).
Конденсаторное торможение с глухо подключенными по схеме треугольника конденсаторами целесообразно применять для быстрой и точной остановки электроприводов, на валу которых действует момент нагрузки не менее 25% номинального момента двигателя.
Для конденсаторного торможения может быть применена и упрощенная схема: однофазное включение конденсаторов (рис. 1,6). Для получения такого же тормозного эффекта, как при трехфазном включении емкости, необходимо, чтобы емкость конденсатора в однофазной схеме была в 2,1 раза больше емкости в каждой фазе в схеме на рис. 1,а. При этом, однако, емкость в однофазной схеме составляет лишь 70% суммарной емкости конденсаторов при их трехфазном включении.
Потери энергии в двигателе при конденсаторном торможении наименьшие по сравнению с другими видами торможения, поэтому оно рекомендуется для электроприводов с большим числом включений.
При выборе аппаратуры следует учесть, что контакторы в цепи статора должны быть рассчитаны на ток, протекающий по конденсаторам. Для устранения недостатка конденсаторного торможения — прекращения действия до полной остановки электродвигателя — используют его сочетания с динамическим имагнитным торможением.
Запуск ЭПТ с последовательным возбуждением
Особенностью применения для пуска двигателей постоянного тока такой схемы является последовательное подключение к мотору переменного сопротивления и катушки возбуждения.
В этом случае, как и в предыдущем, по цепи обеих катушек будет протекать ток одинакового номинала. Подобный метод характеризуется неплохими пусковыми характеристиками, но при условии, что вал электродвигателя в этот момент будет находиться подл нагрузкой. И ещё одна особенность ЭПТ с последовательным возбуждением: частота вращения вала в ходе пуска будет регулироваться в зависимости от нагрузки. Подобная схема идеально подходит для электротранспорта – трамваев, троллейбусов, с некоторыми модификациями – на поездах с электротягой.
Принципиальная схема пуска ЭПТ с последовательным возбуждением:
Устройство фазного ротора
Разрез асинхронного двигателя с фазным ротором. Рисунок 4 1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца
Фазный ротор характерен наличием трех фазных обмоток. Они, зачастую, соединяются по схеме звезды (иногда по схеме треугольника). Каждый конец фазной обмотки присоединен к медному кольцу. Кольца же укрепляются на валу и изолируются. Это дало двигателю еще одно название: асинхронный электродвигатель с контактными кольцами. Всего кольца три. Их плотно насаживают на вал с помощью изоляционных прокладок. На кольца наложены щетки (они расположены в щеткодержателе, в свою очередь укрепленных на крышке подшипника).
Щетки всегда имеют исправный электроконтакт с кольцами. Это соединяет их с самой обмотками якоря. Между собой щетки соединяет трехфазный реостат.
Принцип работы асинхронной машины
Все асинхронные двигатели работают по принципу вращающегося магнитного поля. Но как создать такое поле? Самый простой способ – вращать постоянный магнит по оси. Можно взять медный диск и крутить магнит уже вокруг него. Если магнит достаточно силен, то медный диск тоже начнет вращаться, как бы пытаясь угнаться за магнитом. Будет создаваться ощущение, что между двумя предметами есть некая связь которая постоянно их удерживает. Движение магнита и диска будет не синхронным, ведь последний всегда будет отставать в «погоне».
Объяснение этому явлению можно дать такое: вращаясь вокруг диска, магнит способен возбудить в нем токи Фуко (индукционные). Их траектория – замкнутый круг. Индукционные токи не имеют начала и конца. Их можно назвать токами короткого замыкания, разогревающими металл. Как правило, от них нужно избавляться, но в этом случае именно они и являются причиной появления магнитного поля в диске. Далее это поле начинает взаимодействие уже с полем самого постоянного магнита.
Асинхронные электромоторы работают по такому же принципу, но вращающееся поле создает не магнит, а обмотка статора. В ней, собственно, и создается подходящее для вращения поле.
Подобные условия возможно создать только в системе с несколькими фазами, где ток сдвигается на несколько градусов. В бытовых электроприборах двигатели обычно с двумя фазами, причем вторую создают искусственно. Для этого используют сдвигающий конденсатор, катушку или сопротивление. Электродвигатели, используемые на промышленных предприятиях, выпускают с тремя фазами.
В самом первом трехфазном асинхронном электродвигателе было три обмотки. Они были удалены друг от друга на 120 градусов. Схема работы такого двигателя и синусоидальный ток трех его полюсов показан на рисунке 4.
Рисунок 4
Итак, в тот момент, когда в одной из фаз ток нулевой, в остальных он принимает максимальные значения, при этом фазы отличаются по направлению тока. Таким образом и создается магнитное поле между двумя из трех обмоток. Далее все тут же меняется: один полюс отключается, а другой, тот что остался работать, начинает менять полярность. Это происходит из-за изменения направления тока в обмотке. А тот полюс, что только перешел в рабочее состояние, поддержит смещение поля. Благодаря этому в якоре машины формируются вихревые токи (так как линии магнитного поля пересекают часть ротора). Токи входят во взаимодействие с полем статора, которое уже вращается, пытаются его как бы догнать. Происходит поворот ротора.
Такой принцип работы асинхронной машины, который был выведен еще в XIX веке, актуален и для тех электромоторов, что производят сегодня. Однако, изменения в конструкции все же произошли. Дисковые и цилиндровые якори теперь заменили на «беличьи клетки», чаще используют роторы фазного типа. Форма обмотки статичной части двигателя тоже подверглась изменениям. Вместо катушки с полюсным наконечником используют радиальные обмотки: их укладывают в пазы.
Стоит также упомянуть о том, что такое схема замещения асинхронного двигателя. Ее часто используют в электротехнике во время проведения расчетов. Вместо самого электродвигателя подставляют эквивалентную схему, где электромагнитную связь замещает электрическая.
Как подключить электродвигатель к сети
Питающее напряжение у разных потребителей разное, из-за этого время от времени электрическое оборудование приходится переподключать. Предложенная ниже инструкция поможет безопасно подключить электродвигатель на 220 В.
Задача достаточно проста. Главное в этом деле – не ошибиться при подключении обмоток. Классификация двигателей включает в себя два типа:
- трехфазного с обмоткой (схема включения звезда или треугольник);
- однофазного (у него пусковая обмотка).
Их способы подключения мы и рассмотрим.
Способы настроек устройства
Первый способ — общий
В устройстве имеетсявыбор способа предотвращения остановки двигателя во время торможения:
- Первый способ — общий. Торможение прекращается, как только напряжение шины постоянного тока превысит уровень предотвращения остановки.
- Второй способ — интеллектуальный. Максимально быстрое торможение без отказов из-за перенапряжения.
- Третий способ — предотвращение остановки двигателя с помощью тормозного резистора. Предотвращение остановки двигателя во время торможения включается в координации с динамическим торможением.
- Четвертый способ — торможение при работе с перевозбуждением. Торможение происходит по мере увеличения плотности потока магнитного поля электродвигателя.
- Пятый способ — торможение при работе с перевозбуждением 2. Скорость торможения регулируется в соответствии с напряжением шины постоянного тока. Шестой способ — замедляет регулирование скорости торможения в соответствии с выходным током и напряжением шины постоянного тока.
Для установки необходимых параметров устройства используется автоматическая настройка асинхронного электродвигателя. Способы настройки двигателя: первый — стационарная настройка для междуфазного сопротивления; второй — вращательная автонастройка для частотного управления ( необходима для работы функций энергосбережения, оценки скорости и поиска скорости); третий — инерционная настройка ( перед инерционной настройкой необходимо выполнить вращательную настройку); четвёртый — настройка коэффициента усиления ASR ( перед настройкой своими руками необходимо выполнить вращательную автонастройку).
Управление электроприводами с асинхронными электродвигателями с фазным ротором
Схема управления в функции времени (рис. 10). Эта схема является типичной для двигателей длительного режима с использованием маятниковых реле времени. При нажатии кнопки «Пуск» включается контактор Л. При включении контактора Л начинает работать маятниковое реле, которое через заданный промежуток времени включит своими контактами контактор 1У. Далее процесс повторяется. Замыкающий блок-контакт Л (1—2) предназначен для облегчения работы контактов маятникового реле.
Схема управления в функции времени с несколькими реле времени (рис.11).
Рис. 10. Схема управления асинхронным электродвигателем с фазным ротором в функции времени
Асинхронный электродвигатель с фазным ротором пускают с помощью пусковых реостатов, состоящих из нескольких ступеней, включаемых в фазы обмоток ротора.
При нажатии на кнопку «Пуск» катушка магнитного пускателя ПМ получает питание, и электродвигатель включается на полное сопротивление пускового реостата. Одновременно включается реле времени 1РВ, которое через выдержку времени, достаточную для разгона двигателя на этой ступени, включает контактор 1К, и он своими контактами закорачивает первую ступень пускового реостата. Блок-контакты контактора блокируют катушку 1К и отключают реле времени 1РВ.
Включается одновременно с катушкой 1К реле времени 2РВ, которое через заданную выдержку времени включает второй контактор 2К, а он отключает вторую ступень пускового реостата. Третья ступень пускового реостата отключается аналогично.
Необходимо обеспечивать выбор правильных выдержек времени реле 1РВ, 2РВ и 3РВ. Чрезмерно большие выдержки времени затягивают процесс пуска, а заниженные — не обеспечивают разгон до нужной скорости и вызывают повышенные броски тока. При нажатии на кнопку «Стоп» электродвигатель отключается, и все ступени пускового реостата включаются по фазам ротора.
Схема управления в функции тока (рис. 12). В роторную цепь включены катушки токовых реле ускорения 1РУ, 2РУ, 3РУ, настроенные на срабатывание при токах I1РУ, I2РУ, I3РУ. Контактор 1У включается при спаде силы пускового тока в роторной цепи до значения, соответствующего уставке реле 1РУ.
Рис. 11. Электрическая схема управления асинхронным электродвигателем с фазным ротором
При большей силе тока в цепи ротора размыкающий контакт 1РУ будет разомкнут. Реле ускорения 2РУ и 3РУ, контакторы 2У и 3У работают так же. Из-за возможности вибраций размыкающих контактов реле ускорения 1РУ, 2РУ и 3РУ предусмотрено их шунтирование размыкающими блок-контактами 1У, 2У и 3У. Реле блокировки РБ создает выдержку времени, пока сила тока в роторной цепи не достигнет значения, при котором сработает реле ускорения.
Схема управления в функции частоты (рис. 13). Работа этой схемы обеспечивается с помощью частотных реле 1ЧР, 2ЧР и 3ЧР, катушки которых включены в цепь ротора. Магнитный поток реле создается совместным действием магнитодвижущих сил катушки и короткозамкнутого витка (гильзы). При пуске, т.е. при большой частоте переменного тока в роторе двигателя, размагничивающее действие тока, протекающего по витку, будет велико, и магнитный поток реле будет относительно мал. При уменьшении частоты тока в роторе магнитный поток реле возрастает, так как происходит уменьшение тока в короткозамкнутом витке. При каком-то определенном значении частоты якорь притягивается и замыкает контакты реле частоты (1ЧР, 2ЧР и 3ЧР) в цепи контактора ускорения (1У, 2У и 3У). При оживлении током катушки контактора ускорения происходит шунтирование его контактами соответствующей ступени пускового сопротивления, включенного в цепь ротора. Частотные реле должны быть настроены на определенные частоты.
Рис. 12. Схема управления асинхронным электродвигателем с фазным ротором в функции силы тока
Рис. 13. Схема управления асинхронным электродвигателем с фазным ротором в функции частоты
Принцип торможения противотоком
Мотор отключается от электросети, и пока ротор продолжает вращаться, вновь подключается противофазой. Такая система создаёт эффективный момент блокировки, обычно превышающий пусковой момент.
Между тем, этот эффективный момент торможения должен быть быстро нивелирован, чтобы двигатель после остановки не вращался в противоположном направлении. Несколько устройств контроля и автоматики привлекаются для обеспечения замедления вращения вала электродвигателя до его полной остановки:
- датчики остановки фрикциона,
- датчики центробежного останова,
- хронометрические приборы,
- реле частоты,
- реле напряжения ротора (для двигателей с фазным ротором) и т. д.
Торможение двигателя с короткозамкнутым ротором
Прежде чем выбирать систему противотока для асинхронного мотора с КЗ ротором, важно обеспечить устойчивость двигателя к противоточному способу с учётом требуемой нагрузки. Помимо механических напряжений, этот процесс подвергает ротор воздействию высоких тепловых нагрузок, так как энергия, выделяемая при каждой операции, рассеивается в теле ротора
Помимо механических напряжений, этот процесс подвергает ротор воздействию высоких тепловых нагрузок, так как энергия, выделяемая при каждой операции, рассеивается в теле ротора.
Тепловое напряжение на противотоке в три раза больше, чем при наборе скорости вращения. Здесь пики тока и крутящего момента заметно выше, если сравнивать с моментом пуска.
Принцип методики противоточного воздействия на схему электродвигателя с целью быстрого замедления хода с последующей остановкой. Слева — нормальный рабочий цикл. Справа — цикл замедления и останова Поэтому для обеспечения плавного останова двигателя системой противотока, как правило, последовательно с каждой фазой статора устанавливают резистор. Благодаря такому добавлению, при переключении уменьшается крутящий момент и ток, до значений, равных тем, что отмечаются на статоре в режиме пуска.
Однако противоточная система торможения имеет ряд серьёзных недостатков. Поэтому этот способ для асинхронных двигателей с короткозамкнутым ротором используется в редких случаях и преимущественно на маломощных моторах.
Противоточное торможение на двигателях с фазным ротором
Чтобы ограничить ток и крутящий момент, прежде чем статор будет переключен на противоточный ход, крайне важно использовать резисторы ротора, используемые для запуска. При этом следует периодично добавлять дополнительную резистивную секцию торможения
При правильно подобранном значении роторного резистора, регулировать тормозной момент до требуемого значения несложно
При этом следует периодично добавлять дополнительную резистивную секцию торможения. При правильно подобранном значении роторного резистора, регулировать тормозной момент до требуемого значения несложно.
Момент переключения тока даёт напряжение ротора практически в два раза большее, чем когда ротор находится в состоянии покоя, что иногда требует особых мер при изоляции.
Принцип противоточной электрической блокировки на моторах с фазным ротором. Слева — нормальный режим работы. Справа — замедление с остановом Как и в случае с силовыми двигателями, цепь ротора выделяет значительное количество энергии. Вся выделенная энергия полностью рассеивается на резисторах (за исключением небольших потерь).
Двигатель может быть остановлен автоматически одним из вышеупомянутых устройств контроля. Например, с помощью реле напряжения или частоты в цепи ротора. С помощью схемы противотока удаётся поддерживать ведущую нагрузку с умеренной скоростью.
Однако характеристика крайне неустойчива (значительные колебания скорости по отношению к малым изменениям крутящего момента).
Система пуска двигателя
Электрическое оборудование двигателя включает в себя аккумуляторную батарею, систему зажигания, стартер и генератор с соответствующей электрической проводкой.
Система пуска двигателя включает в себя аккумуляторную батарею, стартер, замок зажигания и соответствующую электрическую проводку. Все элементы системы пуска двигателя соединены друг с другом электрически.
Стартер представляет собой электродвигатель постоянного тока, состоящий из статорных обмоток возбуждения в полюсами и якоря с щеточно-коллекторным узлом. В одном корпусе с электродвигателем расположен рычаг привода и тяговое реле. Корпус защищает механизмы стартера от попадания грязи и брызг воды.
При повороте ключа зажигания в положение пуска двигателя включается тяговое реле. Якорь тягового реле, втягиваясь в электромагнитную катушку, поворачивает рычаг привода, который вводит шестерню стартера в зацепление с венцом маховика. Одновременно якорь замыкает контакты включения электродвигателя. Происходит прокрутка коленчатого вала двигателя стартером. После пуска двигателя, когда частота вращения шестерни превышает частоту вращения вала стартера, муфта свободного хода разъединяет стартер и вал двигателя и тем самым предохраняет электродвигатель от повреждений.
При отпускании ключа зажигания происходит выключение тягового реле и электродвигателя стартера. Во избежание повышенного износа муфты свободного хода и повреждения электродвигателя от превышения допустимых оборотов вала cледует выключать стартер сразу же после пуска двигателя.
Диагностика неисправностей
Перед демонтажем с двигателя стартера необходимо выполнить следующие проверки:
- проверка исправности системы пуска двигателя.
- проверка исправности аккумуляторной батареи.
- проверка исправности электрической проводки: проверить целостность проводов и надежность электрических соединений батареи, замка зажигания, стартера, включая «массовый» провод. При необходимости очистить контакты и подтянуть крепления проводов.
- проверка исправности замка зажигания и тягового реле: осмотреть и определить состояние замка и реле.
- повышенный шум стартера: для нормализации шума стартера при пуске двигателя выполнить следующее:
С помощью таблицы диагностики определить причину повышенного шума.
Устранить обнаруженный дефект. Проверить исправность маховика: отсутствие изгиба, следов сильного износа и т.д. Запустить двигатель и отметить с помощью мела или угля вершины зубьев венца маховика с наибольшим радиальным биением. Выключить двигатель и провернуть коленчатый вал так, чтобы отмеченные зубья венца оказались в зацеплении с шестерней стартера. Отсоединить отрицательный провод батареи.
Проверить зазор между шестерней и зубчатым венцом маховика с помощью проволочного щупа диаметром 0,5 мм, рис. Измерение зазора в зацеплении шестерни с маховиком. Для правильного определения зазора необходимо сцентрировать зуб шестерни между зубьями венца и вставить щуп между вершиной зуба шестерни и впадиной венца. Если зазор менее требуемого, отодвинуть стартер от маховика на необходимое расстояние.
Если зазор намного превышает 0,5 мм и составляет около 1,5 мм, придвинуть стартер к маховику. Повышенный зазор может быть причиной поломки зубьев маховика. Для уменьшения зазора следует отрегулировать толщину прокладок только на наружной опоре стартера. Прокладка толщиной 0,4 мм, расположенная в этом месте, соответствует изменению зазора в зацеплении около 0,3 мм.
При отсутствии стандартных прокладок стартера можно использовать плоские шайбы или другие аналогичные детали. Проверка исправности стартера: если батарея, электрическая проводка и замок зажигания исправны, демонтировать стартер для последующей проверки.
Запрещено включать стартер более, чем на 30 секунд непрерывно. Между включениями стартера необходимо выдерживать паузу не менее 2 минут для его охлаждения. Перегрев стартера из-за продолжительной и непрерывной работы может вывести его из строя. Детали стартера не требуют смазки в процессе эксплуатации, кроме случаев полной разборки стартера.
Что происходит при пуске асинхронного двигателя
Для понимания того, какое устройство применить для плавного пуска электродвигателя, надо знать принцип его работы. Самые распространенные двигатели – асинхронные с короткозамкнутым ротором. Их простая конструкция и соответствующая надежность и обусловили популярность этих электрических машин. Хотя ротор вращается, и его форма оптимизирована под этот процесс, он – не что иное, как вторичная обмотка трансформатора.
А, как известно, если в первичной обмотке течет ток, то в ее сердечнике появляется электромагнитное поле. Перечисленные функции в асинхронном движке выполняет статор. Его магнитное поле, которое, в отличие от трансформатора, вращается вокруг ротора, индуцирует в нем токи, связанные с этим вращением. И чем больше разница скоростей поля и ротора, тем больше ток в последнем. Ведь ротор – это обмотка, замкнутая накоротко. А раз существует трансформаторная связь, значит, токи в обмотках зависимы прямо пропорционально.
Теперь перечислим условия, которые существуют при пуске асинхронного двигателя, питающегося от промышленной сети. Сначала рассмотрим трехфазный вариант:
- неизменное напряжение;
- неизменная частота;
- ротор в состоянии покоя.
Присоединение асинхронного движка к электросети мгновенно создает вращающееся магнитное поле. При этом разница скоростей его и ротора (так называемое скольжение, выражаемое в процентах от скорости вращения электромагнитного поля статора) получается максимальной. И, как следствие этого, – как бы режим короткого замыкания трансформатора. Если мощность движка велика, пусковые токи получаются на уровне тех, что для трансформаторов аналогичной электрической мощности считаются аварийными.
Схема прямого подключения к сети асинхронного двигателя и зависимость силы тока статора от скорости вращения ротора
Какое устройство применить для их ограничения, вполне понятно. Оно должно:
- либо уменьшить величину напряжения на обмотках статора на время разгона ротора;
- либо раскрутить ротор до присоединения статора к электросети.
- Также можно внести конструктивные изменения в асинхронный двигатель.
Текст
,Ч. Кл. Н 02 р 3/2 Гасударственный комитет Совета Министрав СССР оа долам изааретений и открытийПриоритет Опубликовано 03.Х.1973. Бюллетень ЛЪДата опубликования описания 12.11.1974 УДК 621,316.719(088,8) Авторизобретения В. И, ашкал аявите Н НОГО ТОРМОЖТРОДВИ ГАТЕЛ о тормо- беспечиигателей рной баятую емтем, чтоическую 10 аторной е двига схе леи отся его 2его копредеПредмет изоб ен ия 5 заатывает, юченного ечивают игади тся,СПОСОБ КОНДЕНСАТО АСИ НХРО Н Н ЪХ ЭЛИзобретение относится к области тормония асинхронных двигателей.Известные системы конденсаторногжения асинхронных двигателей не овают условий самовозбуждения двпри использовании общеи конденсатотареи и включение двигателей на занкость.Описываемый способ отличаетсякратковременно прерывают электрсвязь тормозных двигателей с конденсбатареей и затем вновь подключает встеди к этой батарее.На фиг. 1 изображена принципиальнаяма устройства для трех двигателей для оществлени я описываемого способа;фиг. 2 — схема управления торможенасинхронных электродвигателей.После отключения одного из двигатесети, например двигателя 1, включаеттормозной контактор 2 и присоединяетконденсаторной батарее 3 на время,ляемое выдержкой реле 4. При этом в цкатушки реле совместного торможенмыкается контакт 6, но реле не срабтак как из-за последовательно вклрезистора 7 ампервитки реле не обесппритягивания якоря реле.Если в процессе торможения первого двтеля к конденсаторной батарее 3 присоеняется второй двигатель 8, то оказывае что в цепи катушки реле 5 два резистора 7 и 9 включены параллельно. Это приводит к увеличению тока катушки и срабатыванию реле 5. Последнее размыкает контакт в цепи катушки контактора 10. Вслед за этим включается реле 11, шунтируя контакт контактора 10 в своей цепи, а затем — реле 12, Оно шунтирует разомкнувшийся вначале контакт контактора 13 в цепи катушки 14. Благодаря этому контактор 10 включается вновь.Кратковременное отключение контактора 10 приводит к уравниванию напряжений статора обоих электродвигателей соединительными проводниками, в связи с чем прн повторном включении контактора 10 условия самовозбуждения обоих двигателей существенно улучшаются и торможение их протекает нормально. Способ конденсаторного торможения асинхронных электродвигателей, отличаюи 1 ийся тем, что, с целью улучшения условий самовозбуждения двигателей при использовании общей конденсаторной батареи и включении двигателей на занятую емкость, кратковременно прерывают электрическую связь тормозимых двигателец с конденсаторной батареей и затем вновь подключают все двигатели к упомянутой батарее.390986 Составитель Ч, Иаздю ПодписпоСР якяз 28,1 И погряфин, пр, Сапунова, 2 Изд. ГА 81 Государственного коми по лелям изобрете Москва, Ж.35, РаунТираж 755 тета Совета Министро пй и открытий скан паб д. 4/5
Смотреть
Электрические схемы
Режим работы – прямой пуск электродвигателя, реверсивный (1 фидер).
Шкаф управления асинхронным двигателем предназначен для местного, дистанционного или автоматического управления одним электродвигателем (пуск электродвигателя, реверс и отключение вращающегося электродвигателя), работающим в продолжительном, кратковременном или повторно-кратковременном режимах.Реверс – это изменение направления вращения ротора. Для реверса необходимо изменить направление вращения магнитного поля статора, что в трехфазных асинхронных двигателях достигается переменой мест двух любых проводов на клеммах трехфазной сети.Ящик имеет местную индикацию состояния работы и возможность для подключения дистанционного управления и дистанционной индикации состояния работы фидера. №НаименованиеКодКол-во |
1SAM250000R1011 | 1 | |
2 | Боковые доп. контакты 1НО+1НЗ HK1-11 для автоматов типа MS116 | 1SAM201902R1001 | 1 |
3 | Контактор AF16-30-10-13 с универсальной катушкой управления 100-250BAC/DC | 1SBL177001R1310 | 2 |
4 | Клемма M4/6 винт 4мм.кв. серая | 1SNA115116R0700 | 6 |
5 | Клемма M4/6.N винт 4мм.кв. , синяя | 1SNA125116R0100 | 1 |
6 | Клемма M4/6.P винт 4мм.кв. Земля | 1SNA165113R1600 | 2 |
7 | Блокировка электромеханическая VEM4 для контакторов AF09…AF38 | 1SBN030111R1000 | 1 |
8 | Контактный блок CA5-10 1НО фронтальный для A9.. A110 | 1SBN010010R1010 | 4 |
9 | Контактный блок CA5-01 1Н3 фронтальный для A9.. A110 | 1SBN010010R1001 | 4 |
10 | Лампа CL-523G зеленый со встроенным светодиодом 230В AC | 1SFA619402R5232 | 2 |
11 | Кнопка CP1-30R-01 красная без фиксации 1HЗ | 1SFA619100R3041 | 1 |
12 | Кнопка CP1-30G-10 зеленая без фиксации 1HO | 1SFA619100R3012 | 2 |
13 | Переключатель ONU2PBR 3-х поз.(1-0-2) (двухуровневый) | 1SCA113972R1001 | 1 |
14 | Клемма MA2,5/5 винт 2,5мм.кв. оранжевая | 1SNA105075R2000 | 15 |
15 | Клемма MA2,5/5.N винт 2,5мм.кв. синяя | 1SNA125486R0500 | 2 |
16 | Изолятор FEM6 Торц. для MA2,5-M10 серый | 1SNA118368R1600 | 1 |
17 | Фиксатор BAM3 Торц. для рейки DIN3, универсальный | 1SNK900001R0000 | 2 |
18 | SR2 Корпус шкафа с монт.платой 400х300х150мм ВхШхГ | SRN4315K | 1 |
19 | Автомат.выкл-ль 1-полюсной S201 C6 | 2CDS251001R0064 | 1 |
20 | Провод, маркировка, расходные материалы | 1 |
Описание и свойства прямого пуска асинхронного электродвигателя
При пуске ротор двигателя, преодолевая момент нагрузки и момент инерции, разгоняется от частоты вращения п = 0 до п . Скольжение при этом меняется от sп = 1 до s. При пуске должны выполняться два основных требования: вращающий момент должен бить больше момента сопротивления (Мвр>Мс) и пусковой ток Iп должен быть по возможности небольшим.
В зависимости от конструкции ротора (короткозамкнутый или фазный), мощности двигателя, характера нагрузки возможны различные способы пуска: прямой пуск, пуск с использованием дополнительных сопротивлений, пуск при пониженном напряжении и др.
Пуск двигателя непосредственным включением на напряжение сети обмотки статора называется прямым пуском. Схема прямого пуска приведена на однолинейной электрической схеме. При включении контактора в первый момент скольжение s = l, а приведенный ток в роторе и равный ему ток статора
максимальны. По мере разгона ротора скольжение уменьшается и поэтому в конце пуска ток значительно меньше, чем в первый момент. В серийных двигателях при прямом пуске кратность пускового тока kI = IП / I1НОМ = ( 5,…,7), причем большее значение относится к двигателям большей мощности.
Значение пускового момента находится при s = 1:
Для серийных двигателей кратность пускового момента МП/ МНОМ = (1.0,…,1.8).
Приведенные данные показывают, что при прямом пуске в сети, питающей двигатель, возникает бросок тока, который может вызвать настолько значительное падение напряжение, что другие двигатели, питающиеся от этой сети, могут остановиться.
С другой стороны, из-за небольшого пускового момента при пуске под нагрузкой двигатель может не преодолеть момент сопротивления на валу и не тронется с места.
В силу указанных недостатков прямой пуск можно применять только у двигателей малой и средней мощности (примерно до 50 кВт).
График изменения тока и момента при пуске асинхронного двигателя с короткозамкнутым ротором.