Емкость и индуктивность в цепи переменного тока
Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.
Реактивное сопротивление катушки индуктивности определяется по формуле:
Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.
Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:
Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):. Какое освещение Вы предпочитаете
ВстроенноеЛюстра
Какое освещение Вы предпочитаете
ВстроенноеЛюстра
От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.
Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.
Оглавление
- 1. КЛАССИФИКАЦИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ. ПОНЯТИЕ О ДВУХПОЛЮСНИКАХ.СОПРОТИВЛЕНИЕ ПРОВОДНИКОВ
- 2. ИСПОЛЬЗОВАНИЕ ЗАКОНОВ ОМА И КИРХГОФА ПРИ РАСЧЕТЕ И АНАЛИЗЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
- 3. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ОДНИМ ИСТОЧНИКОМ ЭНЕРГИИ И ПАССИВНЫМИ ЭЛЕМЕНТАМИ. ПРОСТЕЙШАЯ ЦЕПЬ С ОДНИМ ПРИЕМНИКОМ
- 4. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ПОСЛЕДОВАТЕЛЬНЫМ СОЕДИНЕНИЕМ РЕЗИСТИВНЫХ ЭЛЕМЕНТОВ
- 5. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ПАРАЛЛЕЛЬНЫМ СОЕДИНЕНИЕМ РЕЗИСТИВНЫХ ЭЛЕМЕНТОВ
- 6. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ,СОДЕРЖАЩИЕ СОЕДИНЕНИЯ РЕЗИСТИВНЫХ ЭЛЕМЕНТОВ ТРЕУГОЛЬНИКОМ
- 7. ПОНЯТИЕ ОБ ИСТОЧНИКЕ ТОКА
- 8. МЕТОД ЗАКОНОВ КИРХГОФА. МЕТОД КОНТУРНЫХ ТОКОВ
- 9. МЕТОД УЗЛОВОГО НАПРЯЖЕНИЯ
- 10. МЕТОД НАЛОЖЕНИЯ
- 11. МЕТОД ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА
- 12. ПОЛУЧЕНИЕ СИНУСОИДАЛЬНОЙ ЭДС. ОСНОВНЫЕ СООТНОШЕНИЯ
- 13. ЦЕПЬ, СОДЕРЖАЩАЯ КАТУШКУ С АКТИВНЫМ СОПРОТИВЛЕНИЕМ R И ИНДУКТИВНОСТЬЮ L
- 14. ЦЕПЬ, СОДЕРЖАЩАЯ РЕЗИСТИВНЫЙ И ЕМКОСТНОЙ ЭЛЕМЕНТЫ
- 15. ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ R, L, C
- 16. АКТИВНАЯ, РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ ЦЕПИ
- 17. РЕЗОНАНС НАПРЯЖЕНИЙ
- 18. РЕЗОНАНС ТОКОВ
- 19. СПОСОБЫ СОЕДИНЕНИЯ ФАЗ ИСТОЧНИКОВ И ПРИЕМНИКОВ. ПОЛОЖИТЕЛЬНЫЕ НАПРАВЛЕНИЯ ЭДС, НАПРЯЖЕНИЙ И ТОКОВ
- 20. СООТНОШЕНИЯ МЕЖДУ ФАЗНЫМИ И ЛИНЕЙНЫМИ НАПРЯЖЕНИЯМИ ИСТОЧНИКОВ. НОМИНАЛЬНЫЕ НАПРЯЖЕНИЯ
- 21. СОЕДИНЕНИЯ ПРИЕМНИКОВ ЗВЕЗДОЙ
- 22. СОЕДИНЕНИЯ ПРИЕМНИКОВ ТРЕУГОЛЬНИКОМ
- 23. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ МАГНИТНЫХ УСТРОЙСТВ
- 24. ПОНЯТИЕ О ДВУХТАКТНЫХ И ТРЕХТАКТНЫХ МАГНИТНЫХ УСТРОЙСТВАХ
- 25. МАГНИТОЭЛЕКТРИЧЕСКАЯ СИСТЕМА
Приведённый ознакомительный фрагмент книги Электроника и электротехника. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
Резонанс токов может возникнуть в параллельной цепи (см. рис. 20а), одна из ветвей которой содержит L и r, а другая — C и r.
Резонансом токов называется такое состояние цепи, когда общий ток совпадает по фазе с напряжением, реактивная мощность равна нулю и цепь потребляет только активную мощность. На рисунке 20г изображена векторная диаграмма цепи (рис. 20а) при резонансе токов.
Как видно из векторной диаграммы, общий ток цепи совпадает по фазе с напряжением, если реактивные составляющие токов ветвей с индуктивностью и емкостью равны по модулю: I1p = I2p.
Общий реактивный ток цепи, равный разности реактивных токов ветвей, в этом случае равен нулю: I1p — I2p = 0.
Общий ток цепи имеет только активную составляющую, равную сумме активных составляющих токов ветвей: Ia = I1a = I2a.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Понятие резонанса напряжений в электрических цепях переменного тока Электрический резонанс одно из самых распространенных в мире физических явлений, без которого не было бы TV, диагностических мед. Спрашивайте, я на связи!
Принцип резонанса токов
Токовый резонанс наблюдается внутри электроцепи, обладающей параллельным катушечным, резисторным и конденсаторным подсоединением. Основной принцип работы стандартного резонанса токов не слишком сложен для понимания простого обывателя:
- включение электропитания сопровождается накоплением заряда внутри конденсатора до номинальных показателей напряжения источника;
- отключение питающего источника с последующим замыканием цепи в контур сопровождается процессом переноса разряда на катушечную часть прибора;
- токовые показатели, проходящие по катушке, вызывают генерирование магнитного поля и создание электродвижущей силы самоиндукции, в направлении, встречном току;
- максимальное значение токовых показателей достигается на стадии полного конденсаторного разряда;
- весь объем накопленной энергетической емкости легко преобразуется в магнитное индукционное поле;
- катушечная самоиндукция не провоцирует остановку заряженных частиц, а повторный этап зарядки с другим типом полярности обусловлен отсутствием конденсаторного противотока.
Резонанс в параллельной цепи (резонанс токов)
Итогом данного цикла является повторяющееся преобразование всего катушечного поля в конденсаторный заряд. Определение стандартной резонансной частоты осуществляется аналогично расчетам резонанса напряжения.
Присутствующая внутренняя активная составляющая R вызывает постепенное угасание колебательного процесса, чем и обуславливается токовый резонанс.
Реактивные сопротивления индуктивности и емкости
Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.
Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.
Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся. Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине
Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.
Колебания и частота
Простейший пример колебаний — катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.
Резонанс может наступить только там, где есть колебания
И не важно, какие это колебания – колебания электрического напряжения, звуковые колебания, или просто механические колебания
На рисунке ниже опишем, какими могут быть колебания.
Виды колебаний
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний — это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.
Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.
Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.
Резонанс на качелях
Последовательный колебательный контур
Если соединить последовательно электрический конденсатор и катушку индуктивности, то для синусоидального сигнала определенной частоты указанная схема будет демонстрировать нулевое реактивное сопротивление. Этот эффект называется резонансом колебательного контура, сама схема из конденсатора и индуктивности — последовательным колебательным контуром, а частота, на которой проявляется этот эффект — частотой резонанса.
Хотя и катушка индуктивности, и конденсатор имеют некоторое реактивное сопротивление, вместе они реактивного сопротивления не проявляют. Причина проста. Конденсатор и катушка накапливают и отдают энергию, но делают это по-разному. В тот момент, когда катушка накапливает энергию, конденсатор ее отдает, и наоборот. Конечно, этот эффект проявляется только для синусоидального сигнала, на определенной частоте, в установившемся режиме. Если частота сильно отличается от резонансной, то схема теряет свои чудесные качества и проявляет себя, как катушка и конденсатор. Если последовательный колебательный контур не был запитан, а теперь на него подали синусоидальный сигнал резонансной частоты, то сопротивление будет уменьшаться постепенно, по мере перехода контура в стационарный режим работы.
Если пропускать через последовательный колебательный контур синусоидальный электрический ток резонансной частоты, то падение напряжения на контуре будет равно нулю. Но падение напряжения на конденсаторе отдельно, индуктивности отдельно будет иметь место. Просто эти напряжения компенсируют друг друга в каждый момент времени. Напряжения на конденсаторе и катушке могут быть очень значительными. Одной из популярных ошибок при проектировании последовательного колебательного контура является неправильная оценка напряжения на конденсаторе. Напряжение может в разы, десятки, сотни раз превышать напряжение источника питания. На основе этого эффекта даже разработаны схемы повышающих преобразователей напряжения.
[Амплитудное значение напряжения на конденсаторе, В] = [Амплитудное значение силы тока через контур, А] * [ZC], где [ZC] = 1 / (2 * ПИ * [Частота сигнала, Гц] * [Емкость конденсатора, Ф])
Необходимо также обратить внимание, чтобы ток через последовательный контур не приводил к насыщению сердечника катушки индуктивности. В схемотехнике последовательный колебательный контур применяется, если необходимо пропустить сигнал определенной частоты и отфильтровать все другие
Колебательные контуры бывают небольшие, рассчитанные на работу с небольшими токами и напряжениями, например, во входных и внутренних цепях радиоприемника. Но бывают и силовые, рассчитанные на большие токи и напряжения, например, в радиопередатчиках, силовых резонансных фильтрах и т. д
В схемотехнике последовательный колебательный контур применяется, если необходимо пропустить сигнал определенной частоты и отфильтровать все другие. Колебательные контуры бывают небольшие, рассчитанные на работу с небольшими токами и напряжениями, например, во входных и внутренних цепях радиоприемника. Но бывают и силовые, рассчитанные на большие токи и напряжения, например, в радиопередатчиках, силовых резонансных фильтрах и т. д.
Электроника и электротехника. Шпаргалка. 18. РЕЗОНАНС ТОКОВ (Юлия Валерьевна Щербакова)
№27 Явление резонанса в электрических цепях.
Резонансом называют режим, когда в цепи, содержащей индуктивности и емкости, ток совпадает по фазе с напряжением. Входные реактивные сопротивление и проводимость равны нулю: x = ImZ = 0 и B = ImY = 0. Цепь носит чисто активный характер: Z = R; сдвиг фаз отсутствует (φ=0).
В цепи, содержащей последовательно соединенные участки с индуктивным и емкостным характерами сопротивлений, резонанс называется резонансом напряжений. Рассмотрим простейшую цепь, которую часто называют последовательным контуром. Для нее резонанс наступает при x = xL – xC = 0 или xL = xC, откуда:
Напряжения на индуктивности и емкости в этом режиме равны по величине и, находясь в противофазе, компенсируют друг друга. Все приложенное к цепи напряжение приходится на ее активное сопротивление (рис. 27.1, а).
Рис. 27.1 — Векторные диаграммы при резонансе напряжений(а) и токов(б)
Напряжения на индуктивности и емкости могут значительно превышать напряжения на входе цепи. Их отношение, называемое добротностью контура Q, определяется величинами индуктивного (или емкостного) и активного сопротивлений:
Добротность показывает, во сколько раз напряжения на индуктивности и емкости при резонансе превышают напряжение, приложенное к цепи. В радиотехнических цепях она может достигать нескольких сотен единиц.
Аналогичные рассуждения можно провести и для цепи, состоящей из параллельно соединенных R, L и C. Векторная диаграмма ее резонансного режима приведена на рис. 27.1, б. Рассмотрим теперь более сложную цепь с двумя параллельными ветвями, содержащими активные и реактивные сопротивления (рис. 27.3, а).
Рис. 27.3 — Разветвленная цепь (а) и ее эквивалентная схема (б)
Для нее условием резонанса является равенство нулю ее реактивной проводимости: ImY = 0. Это равенство означает, что мы должны мнимую часть комплексного выражения Y приравнять к нулю.
Определяем комплексную проводимость цепи. Она равна сумме комплексных проводимостей ветвей:
Приравнивая к нулю выражение, стоящее в круглых скобках, получаем:
Левая и правая части последнего выражения представляют собой не что иное, как реактивные проводимости первой и второй ветвей B1 и B2. Заменяя схему на рис. 27.3, а эквивалентной (рис. 27.3, б), параметры которой вычисляем по формулам, и используя условие резонанса (B = B1 – B2 = 0), снова приходим к конечному выражению.
Схеме на рис. 27.3, б соответствует векторная диаграмма, приведенная на рис. 27.4
Рис. 27.4 — Векторная диаграмма резонансного режима разветвленной цепи
Резонанс в разветвленной цепи называется резонансом токов. Реактивные составляющие токов параллельных ветвей противоположны по фазе, равны по величине и компенсируют друг друга, а сумма активных составляющих токов ветвей дает общий ток.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Понятие о резонанс токов. Условия его возникновения и способы осуществления Электрический резонанс одно из самых распространенных в мире физических явлений, без которого не было бы TV, диагностических мед. Спрашивайте, я на связи!
Резонанс токов
Резонанс токов
1. Для контура (рис. 5.31) параметры которого равны: определить, чему равны эквивалентные резистивное, реактивное и полное сопротивления контура, если вследствие расстройки частота станет на 0,2% больше резонансной. Для этого случая вычислить все токи и мощность, выделяемую полагая, что значение приложенного к цепи осталось прежним (U=200 В).Решение:
Вначале определим добротность Q и сопротивление контура при резонансе:
Произведем расчеты при . Найдем абсолютную и обобщенную расстройки и искомые сопротивления: имеет емкостный характер, так как x, положительно.Полное сопротивление при расстройке
Так как отрицательно, ток опережает напряжение
Расходуемая мощность
Заметим, что даже при небольшой расстройке (0,2%) в полном сопротивлении контура появилась значительная реактивная составляющая , вследствие которой и оказался сдвиг фаз между током I и напряжением U. Ввиду небольшого изменения частоты реактивные сопротивления каждой из параллельных ветвей и токи в них почти не изменились и не намного изменился ток в неразветвленной части цепи.2. Параллельный контур с малыми потерями (т. е. Q>>1) включен к источнику с ЭДС Е=200 В и внутренним сопротивлением (см. рис. 5.35). Определить параметры контура R и L, если известны резонансная частота , емкость С=300 пФ и что сопротивление контура при резонансе равно внутреннему сопротивлению генератора . Вычислить токи источника, каждой из ветвей, мощность, доставляемую источником, и выделяемую в нем и в параллельном контуре при резонансе.Решение:
Находим индуктивность:
Имея в виду, что по условию находим резистивное сопротивление
Ток источника и напряжение на параллельном контуре при резонансе
В каждой из ветвей контура токи
Мощность, доставляемая источником , расходуемая в нем и выделяемая в контуре :
3. Для задачи 2. определить абсолютное значение и относительную величину полосы пропускания контура по напряжению.Решение:
Предварительно вычислим характеристическое сопротивление и добротность контура
Искомые значения абсолютной и относительной величины полосы пропускания контура по напряжению равны:
4. Параллельный контур, параметры которого , подключен к источнику с ЭДС Е=200 В и внутренним сопротивлением .1. Вычислить эквивалентную добротность контура и полосу его пропускания. Найти все токи и расходуемую в контуре мощность при резонансе.2. Чему равны эквивалентная добротность контура и полоса его пропускания, если его нагрузить на резистивное сопротивление (рис. 5.41, а)? Определить для данного случая токи, мощности, доставляемую источником и расходуемую в контуре и нагрузочном сопротивлении при резонансе.
Решение:
1. Для заданного контура вычисляем
Эквивалентную добротность заданного контура с учетом внутреннего сопротивления источника ЭДС и полосу его пропускания определяем: Так как данные контура, ЭДС источника и его внутреннего сопротивления те же, что и в задаче 2., то в решении были уже вычислены требуемые по условию 2. Решение задачи в случае нагрузки контура на сопротивление проще всего получить, осуществив замену относительно зажимов ab заданного источника ЭДС с и подключенным к нему параллельно сопротивлением (рис. 5.41, б), эквивалентным с ЭДС и внутренним сопротивлением (рис. 5.41,в). Для определения отключим параллельный контур (см. рис. 5.41,б и в) и вычислим напряжение холостого хода равное :
Сопротивление короткого замыкания равно внутреннему сопротивлению эквивалентного источника (рис. 5.41,г):
Для схемы рис. 5.41 эквивалентные добротность и полоса пропускания соответственно равны
Следует отметить, что подключение к контуру сопротивления приводит к уменьшению эквивалентной добротности и увеличению полосы пропускания.Рассчитываем ток в неразветвленной части заданной цепи, напряжение на контуре, токи в ветвях контура и нагрузочном сопротивлении , мощности, доставляемую источником и выделяемую в контуре и сопротивлении :
Проверка показывает, что
Смотри полное содержание по представленным решенным задачам.
Резонанс напряжений
Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить ;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:
и конденсатор в 1000 пФ
Из них собираю последовательный колебательный контур. Итак, чтобы поймать резонанс, я не буду в схему добавлять резистор. Поступлю более хитрее.
Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений. В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура. Перегружать генератор — это не есть хорошо, но что не сделаешь ради науки!
Ну что же, приступим ;-). Давайте сначала посчитаем резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.
Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:
Размах амплитуды 4 Вольта
Хотя на генераторе частоты размах более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.
Теперь небольшой прикол 😉
Вот этот сигнал мы подаем на наш последовательный колебательный контур:
Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.
Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:
Смотрим напряжение на конденсаторе:
Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!
Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:
Народ! Халява!!! Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию с конденсатора или с катушки!
Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как среднеквадратичное напряжение будет где-то Вольт 14, и цепляю поочередно к ним лампочку:
Как видите — полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии). Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока — увы! Поэтому, последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения, а не мощности!
Объяснение резонанса напряжения
При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше. Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется. Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.
При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение UL = IXL , а на конденсаторе UC = IXC . А так как при резонансе у нас XL = XC , то получаем что UL = UC , ток ведь в цепи один и тот же ;-). Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений, так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе.
Принцип работы параллельного колебательного контура
Давайте подцепим к генератору частоты реальный параллельный колебательный контур
Что будет, если мы подадим на контур ток с частотой в ноль Герц, то есть постоянный ток? Он спокойно побежит через катушку и будет ограничиваться лишь сопротивлением потерь R самой катушки. Через конденсатор ток не побежит, потому что конденсатор не пропускает постоянный ток. Об это я писал еще в статье .
Давайте тогда будем добавлять частоту. Итак, с увеличением частоты у нас конденсатор и катушка начнут оказывать реактивное сопротивление электрическому току.
Реактивное сопротивление катушки выражается по формуле
а конденсатора по формуле
Более подробно про это можно прочитать в этой статье.
Если плавно увеличивать частоту, то можно понять из формул, что в самом начале при плавном увеличении частоты конденсатор будет оказывать бОльшее сопротивление, чем катушка индуктивности. На какой-то частоте реактивные сопротивления катушки XL и конденсатора XC уравняются. Если далее увеличивать частоту, то уже катушка уже будет оказывать большее сопротивление, чем конденсатор.
Резонанс токов – обзор понятия и методики расчета
Резонанс токов, хорошо известный как естественный токовый «параллельный резонанс» — процесс или явление, которое протекает в условиях параллельного типа колебательного контура и наличия напряжения.
В данном случае частота источника напряжения должна иметь совпадение с аналогичными резонансными показателями контура.
Применение токового резонанса
Основная область активного применения широко востребованных резонансных токов сегодня представлена:
- некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
- радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
- асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
- установками высокоточной электрической сварки;
- колебательными контурами внутри узлов генераторов электронного типа;
- приборами, отличающимися высокочастотной закалкой;
- снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.
Схема цепи
Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.
Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.
Резонанс токов в цепи с переменным током
Протекание тока внутри электрической цепи с последовательным, параллельным или смешанным типом соединения элементов, вызывает получение различных режимов функционирования.
Таким образом, резонанс электрической цепи является режимом участка, который содержит элементы индуктивного и емкостного типа, а угол фазового сдвига между токовыми величинами и показателями напряжения нулевые.
В соединяемых параллельным способом конденсаторе и катушечной части наблюдается равное реактивное сопротивление, чем обусловлен резонанс.
Также должен учитываться тот факт, что для катушечной части и конденсатора характерно полное отсутствие активного сопротивления, а равенство реактивного сопротивления делает нулевыми общие токовые показатели внутри неразветвленной части электрической цепи и большие величины тока в ветвях.
В условиях параллельного соединения индуктивной катушки и конденсатора получается колебательный контур, который отличается наличием создающего колебания генератора, не подключенного в контур, что делает систему замкнутой.
Явление, сопровождающееся резким уменьшением амплитуды силы токовых величин внешней цепи, которая используется для питания параллельно включенного конденсатора и обычной индуктивной катушки в условиях приближения частоты приложенного напряжения к частоте резонанса, носит название токового или параллельного резонанса.
Заключение
Резонанс токовых величин в физике — это естественное явление, сопровождающееся резким возрастанием амплитуды колебания внутри системы, что обусловлено совпадением показателей собственных и внешних возмущающих частот.
Подобный вариант явлений характеризует электрические схемы с наличием элементов, представленных нагрузками активного, индуктивного и емкостного типа. Таким образом, токовый резонанс — один из наиважнейших параметров, широко используемых в настоящее время в целом ряде современных отраслей, включая промышленное электрическое снабжение и радиосвязь.
Колебания: частота и амплитуда
Появление резонанса неразрывно связано с колебаниями, то есть с процессом изменений состояния какой-нибудь системы, который повторяется во времени и происходит около определённой точки равновесия, периодически отклоняясь то в сторону со знаком «минус», то в противоположную — со знаком «плюс»
При этом не важна природа самой колебательной системы и место её нахождения, а важно лишь наличие исходной точки состояния, к которой она возвращается через строго определённый промежуток времени. Это могут быть механические колебания, периодические изменения значения силы электрического тока в цепи, звук и так далее
Как найти резонанс параллельного колебательного контура на практике
Ладно, ближе к делу. Берем паяльник в руки и спаиваем катушку и конденсатор параллельно. Катушка на 22 мкГн, а конденсатор на 1000пФ.
Итак, реальная схема этого контура будет вот такая:
Для того, чтобы все показать наглядно и понятно, давайте добавим к контуру последовательно резистор на 1 КОм и соберем вот такую схему:
На генераторе мы будет менять частоту, а с клемм X1 и X2 мы будем снимать напряжение и смотреть его на осциллографе.
Нетрудно догадаться, что у нас сопротивление параллельного колебательного контура будет зависеть от частоты генератора, так как в этом колебательном контуре мы видим два радиоэлемента, чьи реактивные сопротивления напрямую зависит от частоты, поэтому заменим колебательный контур эквивалентным сопротивлением контура Rкон.
Упрощенная схема будет выглядеть вот так:
Интересно, на что похожа эта схема? Не на делитель ли напряжения? Именно! Итак, вспоминаем правило делителя напряжения: на меньшем сопротивлении падает меньшее напряжение, на бОльшем сопротивлении падает бОльшее напряжение. Какой вывод можно сделать применительно к нашему колебательному контуру? Да все просто: на резонансной частоте сопротивление Rкон будет максимальным, вследствие чего у нас на этом сопротивлении «упадет» бОльшее напряжение.
Начинаем наш опыт. Поднимаем частоту на генераторе, начиная с самых маленьких частот.
200 Герц.
Как вы видите, на колебательном контуре «падает» малое напряжение, значит, по правилу делителя напряжения, можно сказать, что сейчас у контура малое сопротивление Rкон
Добавляем частоту. 11,4 Килогерца
Как вы видите, напряжение на контуре поднялось. Это значит, что сопротивление колебательного контура увеличилось.
Добавляем еще частоту. 50 Килогерц
Заметьте, напряжение на контуре повысилось еще больше. Значит его сопротивление еще больше увеличилось.
723 Килогерца
Обратите внимание на цену деления одного квадратика по вертикали, по сравнению с прошлым опытом. Там было 20мВ на один квадратик, а сейчас уже 500 мВ на один квадратик
Напряжение выросло, так как сопротивление колебательного контура стало еще больше.
И вот я поймал такую частоту, на которой получилось максимальное напряжение на колебательном контуре
Обратите внимание на цену деления по вертикали. Она равняется двум Вольтам
Дальнейшее увеличение частоты приводит к тому, что напряжение начинает падать:
Снова добавляем частоту и видим, что напряжение стало еще меньше:
Амплитуда резонанса
В КК при подаче переменного напряжения от внешнего источника наблюдаются два вида резонанса и резкое увеличение двух видов амплитуды: амплитуды тока и амплитуды напряжения.
Амплитуда тока
Амплитуда тока резко возрастает при резонансе напряжений в последовательном контуре (последовательный резонанс). Источник переменной ЭДС включён в цепь, где нагрузкой служат последовательно включённые элементы L и С.
В этом случае в цепь входят сопротивления: активное r и реактивное x, равное:
x = xL – xC.
Так как для внутренних колебаний xL и xC равны, то для тока, поступающего от генератора, при резонансе (когда частоты совпадают) эти значения тоже одинаковы. Поэтому x = 0. В итоге полное сопротивление цепи будет состоять только из небольшого активного сопротивления. Ток при этом получается максимальным.
Схема (а) и резонансные кривые (б) для резонанса напряжений
Амплитуда напряжения
Резонанс токов (параллельный резонанс) является условием резкого возрастания амплитуды напряжения. Источник ЭДС подключается вне контура и нагружен параллельно соединёнными элементами L и С. В этом случае на эффект резонанса влияет внутреннее сопротивление генератора. Амплитуда напряжения на контуре максимальна при малом отличии напряжения контура от напряжения генератора. Это возможно при малом Ri.
Внимание! Изменение частоты генератора меняет ток, а амплитуда напряжения на контуре не отстаёт по величине от напряжения на генераторе. Если, U = Е – I*Ri, где Е – ЭДС, I – ток, то при малом Ri U = Е. Схема (а) и резонансные кривые (б) для резонанса токов
Схема (а) и резонансные кривые (б) для резонанса токов
Формула для определения расчётной резонансной частоты для разных колебательных систем различается по входящим в неё параметрам. Несмотря на все различия, суть остаётся неизменной: эффект резонанса наступает тогда, когда частота внутренних колебаний системы и внешних воздействий становятся равны друг другу.