Основные характеристики
Чтобы правильно выбрать резистор важно знать, на какие характеристики нужно смотреть при выборе. К его основным параметрам относится:
- Номинальное сопротивление.
- Максимальная рассеиваемая мощность.
- Допуск или класс точности. От него зависит, насколько процентов сопротивление деталей из этого класса может отличаться от заявленного.
В большинстве случае этих сведений достаточно. Новички часто забывают о допустимой мощности резистора, и они у них перегорают. Вы можете рассчитать сколько Ватт выделяется на резисторе по формуле, указанной в предыдущем разделе статьи. Покупайте резисторы с запасом по мощности в 20-30%, больше – лучше, меньше – не нужно!
Анализ резисторных схем
Чтобы обобщить то, что мы узнали в этой статье, давайте проанализируем следующую схему, определив всё, что можем, исходя из предоставленной информации:
Рисунок 8 – Пример схемы
Всё, что нам здесь дано для начала, – это напряжение батареи (10 вольт) и сила тока в цепи (2 ампера). Нам неизвестно сопротивление резистора в омах или рассеиваемая им мощность в ваттах. Вспоминая формулы закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных значений напряжения и силы тока:
\(R=\frac{E}{I} \qquad и \qquad P=IE\)
Подставляя известные значения напряжения (E) и силы тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):
\(R = \frac{10 \ В}{2 \ А} = 5 \ Ом\)
\(P = (2 \ А)(10 \ В) = 20 \ Вт\)
Для заданных условий цепи (10 В и 2 А) сопротивление резистора должно быть 5 Ом. Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы использовать резистор с минимальной номинальной мощностью 20 Вт, иначе бы он перегрелся и вышел из строя.
Типы включения и примеры использования
Основные типы включения это последовательные и параллельные соединения.
Последовательно сопротивление рассчитывается просто. Достаточно все сложить.
При последовательном соединении напряжение распределяется по резисторам согласно их сопротивлениям.
Это второе правило Кирхгофа. Например, напряжение 12 В, а пара резисторов по 1 кОм.
Соответственно, на каждом из них по 6 В. Это простой пример делителя напряжения. Здесь пара деталей делит напряжение, и благодаря этому можно получить необходимое напряжение.
Здесь R1 и R2 образуют делитель напряжения, они выполняют роль делителя напряжения. Между этими двумя резисторами и базой транзистором протекает ток, который открывает транзистор.
Это необходимо для того, чтобы он работал без искажений.
Параллельное включение
При параллельном соединении радиодеталей, общее сопротивление цепи снижается. Если два резистора по 1 кОм соединены параллельно, то общее будет равно меньше 0,5 кОм, т.е. сопротивление цепи (эквивалентное) равно половине самого наименьшего.
В таком соединении наблюдается первое правило Кирхгофа. В точку соединения направляется ток в 1 А, а в узле он расходится на два направления по 0,5 А.
Формулы расчета
Для двух резисторов:
Для более:
Для тока параллельное соединение — это как вторая дорога или обходной путь. Еще такой тип соединения называют шунтированием. В качестве примера можно привести амперметр. Чтобы увеличить его шкалу показаний, достаточно подключить параллельно резистору еще один шунтирующий.
Его сопротивление рассчитывается по формуле:
Эквивалентное соединение
В схеме усилителя к эмиттеру транзистора VT1 подключена пара из резистора R3 и конденсатора C2.
В этом случае VT1 и R3 подключены последовательно друг к другу. Зачем это надо? Когда усилитель работает, транзистор начинает нагреваться и его сопротивление снижается. R3, как и в случае со светодиодом, не позволяет транзистору перегреваться. Он балансирует общее сопротивление, чтобы транзистор не вносил искажения в сигнал. Это называется режим термостабилизации.
А конденсатор C2 подключен к R3 параллельно. И это нужно для того, чтобы при нормальном режиме работы усилителя, переменный сигнал прошел без потерь. Так работает параллельный фильтр.
Если бы был только один R3, то мощность усилителя была намного меньше из-за того, что он забирает переменное напряжение на себя. А конденсатор пропускает без потерь, но не пропускает постоянное напряжение.
Принцип работы подстроечного резистора
После установки деталей электронного устройства обычно его характеристики отличаются от номинальных. Для точной настройки работы устройства используются режущие резисторы. В принципе, это те же переменные резисторы, но выделенные в отдельную группу, потому что конструктивно они отличаются от переменных резисторов. У них нет ручек, которые меняются при повороте. Вместо отверстий под плоскую или прямую отвертку.
В процессе работы устройства через некоторое время меняются его параметры. Подстроечные резисторы используются для приведения их к номинальному значению.
По типу движения курсора бывают срезанные резисторы с движением по прямой и с движением по кругу.
Для точной настройки параметров электронного устройства используются режущие резисторы с большим количеством витков. В них изменение сопротивления от минимального до максимального осуществляется за несколько оборотов или даже за десятки оборотов вала обрезки. В этих резисторах контакт перемещается посредством червячной передачи.
Виды резисторов по назначению
Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:
- Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
- Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
- Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.
Принцип работы
Флюс для пайки — что это такое и для чего он нужен
Приобретая деталь, нужно понимать, как именно работает резистор. Любой проводниковый компонент имеет определенные особенности, обусловленные его внутренним строением. Когда электроток идет по проводнику, заряженные частицы, проходя через его структуру, теряют энергетический запас, отдавая его наружу и нагревая вещество. Известно, что величина напряжения равна произведению проходящего по проводнику тока и сопротивления материала, из которого он изготовлен. Что же делает резистор? Поскольку он содержит в себе компонент с очень высокой сопротивляемостью току, при прохождении последнего на элементе понижается напряжение, и происходит выделение некоторой части мощности в виде теплоты.
Расчет, подбор параметров потенциометра
Итак, потенциометр предназначен для регулировки напряжения именно на высокоомной нагрузке – она должна иметь сопр. выше, чем ПТ, иначе количество Вольт будет определяться ею же, функция регулировки пропадет.
Основные особенности по расчету ПТ такие:
- сопр. ПТ должно быть намного меньшим (Rпот<< Rн), чем у нагрузки. Это не обязательно, но при несоблюдении, дальнейшие исчисления усложнятся – придется учитывать ток на ней. Рекомендовано значения ниже как минимум в 10 раз, но лучше — в 20, 30, 100. Чем меньше, тем лучше, но не чрезмерно, иначе не будут выполнены требования следующих пунктов;
- U токового источника должно подходить, ПТ должен выдерживать его (Iном.пот×Rпот) > Uист. При этом количество Ампер, текущих через переменник (Iпот = Uuст/Rпот) должно быть меньшим номинала детали по току;
- ток, проходящий через ПТ (Iпот = Uuст /Rпот), не должен быть выше номинала по таковому источника (Iпот < Iном. ист.);
- если есть несколько ПТ и все они подходят под указанные выше условия, то берут изделие с большим сопротивлением — оно будет потреблять меньший ток, что особенно значимо при применении с гальваническими батареями, АКБ.
Еще нюанс регулировки тока и напряжения реостатом и потенциометром:
- оба позволяют получать на нагрузке U равное или ниже U источника;
- но с ПТ можно понижать указанную выше величину до 0, чего чрезвычайно сложно, почти невозможно, добиться от РС.
Важность мощности рассеяния
При подборе переменного резистора учитывают в первую очередь номинал по сопротивлению, но таковому по току, иными словами, мощности рассеяния, не менее важно уделить внимание. Два параметра взаимосвязанные. Объясним на примере
Схема содержит резистор с определенным R, но выясняется, что это значение должно быть значительно ниже, то есть деталь надо заменить
Объясним на примере. Схема содержит резистор с определенным R, но выясняется, что это значение должно быть значительно ниже, то есть деталь надо заменить.
Ставят элемент со значительно меньшим R, и, казалось бы, проблема решена, но тут возникает опасность, связанная с игнорированием закона Ома. R на резисторе было значительным, U цепи фиксированное. При понижении номинала переменника общее R линии упало, как следствие, ток возрос. Если поставить ПТ с прежней мощностью рассеяния, то при увеличенном I он может не выдержать нагрузки, последствия традиционные — перегрев, вплоть до возгорания.
Приблизительная норма: при номинале в 10 Ом по цепи должен протекать ток около 1 А — это мощность, рассеиваемая резистором. При выборе обязательно надо смотреть эту допустимую величину для детали.
Что такое резистор
Наиболее простое определение выглядит так: резистор — это элемент электрической цепи, оказывающий сопротивление протекающему через него току. Название элемента происходит от латинского слова «resisto» — «сопротивляюсь», радиолюбители эту деталь часто так и называют — сопротивление.
Рассмотрим, что такое резисторы, для чего нужны резисторы. Ответы на эти вопросы подразумевают знакомство с физическим смыслом основных понятий электротехники.
Для разъяснения принципа работы резистора можно использовать аналогию с водопроводными трубами. Если каким-либо образом затруднить протекание воды в трубе (например, уменьшив ее диаметр), произойдет повышение внутреннего давления. Убирая преграду, мы снижаем давление. В электротехнике этому давлению соответствует напряжение — затрудняя протекание электрического тока, мы повышаем напряжение в цепи, снижая сопротивление, понижаем и напряжение.
Изменяя диаметр трубы, можно менять скорость потока воды, в электрических цепях путем изменения сопротивления можно регулировать силу тока. Величина сопротивления обратно пропорциональна проводимости элемента.
Свойства резистивных элементов можно использовать в следующих целях:
- преобразование силы тока в напряжение и наоборот;
- ограничение протекающего тока с получением его заданной величины;
- создание делителей напряжения (например, в измерительных приборах);
- решение других специальных задач (например, уменьшение радиопомех).
Пояснить, что такое резистор и для чего он нужен, можно на следующем примере. Свечение знакомого всем светодиода происходит при малой силе тока, но его собственное сопротивление настолько мало, что если светодиод поместить в цепь напрямую, то даже при напряжении 5 В текущий через него ток превысит допустимые параметры детали. От такой нагрузки светодиод сразу выйдет из строя. Поэтому в схему включают резистор, назначение которого в данном случае — ограничение тока заданным значением.
Смотрите это видео на YouTube
Все резистивные элементы относятся к пассивным компонентам электрических цепей, в отличие от активных они не отдают энергию в систему, а лишь потребляют ее.
Разобравшись, что такое резисторы, необходимо рассмотреть их виды, обозначение и маркировку.
Виды резисторов по назначению
Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:
- Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
- Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
- Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.
Виды
Классификация резисторов происходит по ряду критериев. Если говорить о дискретных компонентах, то по методу монтажа их делят на:
- Выводные. Используются для монтажа сквозь печатную плату. У таких элементов есть выводы, расположенные радиально или аксиально. В народе выводы называют ножками. Этот вид резисторов активно использовался во всех старых устройствах (20 и боле лет назад) – старых телевизорах, приёмниках, в общем везде, и сейчас используется в простых устройствах, а также там, где использование SMD компонентов по какой-то причине затруднено либо невозможно.
- SMD. Это элементы, у которых нет ножек. Выводы для подключения расположены на поверхности корпуса, незначительно выступая над ней. Они монтируются непосредственно на поверхность печатной платы. Преимуществом таких резисторов является простота и дешевизна сборки на автоматизированных линиях, экономия места на печатной плате.
Внешний вид элементов двух типов вы видите на рисунке ниже:
Мы уже знаем, как выглядит этот компонент, теперь следует узнать о классификации по технологии изготовления. Выводные резисторы бывают:
- Проволочными. В качестве резистивного компонента используют проволоку, намотанную на сердечнике, для снижения паразитной индуктивности используют бифилярную намотку. Проволоку выбирают из металла с низким температурным коэффициентом сопротивления и низким удельным сопротивлением.
- Металлопленочные и композитные. Как можно догадаться, здесь в качестве резистивного элемента используют пленки из металлического сплава.
Так как резистор состоит из резистивного материала, в роли последнего может выступать проволока или плёнка с высоким удельным сопротивлением. Что это такое? Такие материалы как:
- манганин;
- константан;
- нихром;
- никелин;
- металлодиэлектрики;
- оксиды металлов;
- углерод и прочие.
SMD или чип-резисторы бывают тонкопленочными и толстопленочными, в качестве резистивного материала используют:
Материал | Особенности, где используется |
Никель-хром (нихром, NiCr) | в тонкоплёночных, которые устойчивы к высокой влажности (moisture-resistant) |
Нитрид дитантала (Ta2N). | TCR составляет 25 ppm/0С (-55…+1250С); |
Диоксид рутения (RuO2) | в толстоплёночных |
Рутенит свинца (Pb2Ru2O6) | в толстоплёночных |
Рутенит висмута (Bi2Ru2O7) | в толстоплёночных |
Диоксиды рутения, легированные ванадием (Ru0,8V0,2O2, Ru0,9V0,1O2, Ru0,67V0,33O2) | — |
Оксид свинца (PbO) | — |
Висмут иридий (Bi2Ir2O7) | — |
Сплав никеля | В низкоомных (0,03…10 Ом) тонкоплёночных изделиях |
На рисунке ниже изображено, из чего состоит резистор:
По конструкции различают:
- Постоянные. У них два вывода, а сопротивление вы изменять не можете – оно постоянно.
- Переменные. Это потенциометры и подстроечные резисторы, принцип действия которых основан на перемещении скользящего контакта (бегунка) по резистивному слою.
- Нелинейные. Сопротивление компонентов этого типа изменяется под воздействием температуры (терморезисторы), светового излучения (фоторезисторы), напряжения (варисторы) и других величин.
А также по назначению – общего и специального. Последние подразделяются на:
- Высокоомные (диапазон сопротивлений десятки МОм — единицы ТОм, при рабочих напряжениях до 400В).
- Высоковольтные (рассчитаны на работу в цепях с напряжением до десятков кВ).
- Высокочастотные (особенностью работы на высокой частоте является требование к низким собственным индуктивностям и ёмкостям. Такие изделия могут работать в цепях с частотой сигнала в сотни МГц).
- Прецизионные и сверхпрецизионные (это изделия с высоким классом точности. У них допуск по отклонению от номинального сопротивления 0,001 — 1 %, в то время как у обычных допуск может быть и 5% и 10% и больше).
Обозначение резисторов на схеме
Постоянный резистор без указания номинальной мощности рассеивания |
Постоянный резистор номинальной мощностью рассеивания 0,05 Вт |
Постоянный резистор номинальной мощностью рассеивания 0,125 Вт |
Постоянный резистор номинальной мощностью рассеивания 0,25 Вт |
Постоянный резистор номинальной мощностью рассеивания 0,5 Вт |
Постоянный резистор номинальной мощностью рассеивания 1 Вт |
Постоянный резистор номинальной мощностью рассеивания 2 Вт |
Постоянный резистор номинальной мощностью рассеивания 5 Вт |
Обозначение переменных, подстроечных и нелинейных резисторов на схемах:
Обозначение по ГОСТ 2.728-74 | Описание |
Переменный резистор (реостат). | |
Переменный резистор, включенный как реостат (ползунок соединён с одним из крайних выводов). | |
Подстроечный резистор. | |
Подстроечный резистор, включенный как реостат (ползунок соединён с одним из крайних выводов). | |
Варистор (сопротивление зависит от приложенного напряжения). | |
Термистор (сопротивление зависит от температуры). | |
Фоторезистор (сопротивление зависит от освещённости). |
Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок.
Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:
- 25 Ом – 25 R;
- 25 кОм – 25 K;
- 25 МОм – 25 M.
Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:
- 0,25 Ом – R 25;
- 0,25 кОм – K 25;
- 0,25 МОм – M 25.
Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:
- 2,5 Ом – 2R5;
- 2,5 кОм – 2K5;
- 2,5 МОм – 2M5.
Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.
Допустимая погрешность, ±% | 20 | 10 | 5 | 2 | 1 | 0,5 | 0,2 | 0,1 |
Буква | ||||||||
Русская | В | С | И | Л | Р | Д | У | Ж |
Латинская | M | K | J | G | F | D | C | B |
Виды соединения резисторов
Различают три типа соединения резисторов:
- параллельное;
- последовательное;
- смешанное.
Для последовательного соединения конец одного резистора нужно паять с началом другого и далее по цепочке. Так компоненты соединяются друг за другом и пропускают общий ток, проводник нужно правильно припаять. Количество таким образом соединенных проводников будет влиять на протекающий ток и оказывать общее сопротивление.
Параллельное соединение элементов отличается тем. Что все они сходятся в одной общей точке в начале и в другой точке в конце. В этом случае через каждый элемент течет свой ток, а значит сопротивление снижается. Смешанное соединение объединяет в себе оба предыдущих варианта, а расчет итогового сопротивления подсчитывают разбив схему на простые участки.
Как измерить сопротивление резистора
Любой резистор обладает сопротивлением. Кто не в курсе, что такое сопротивление и как оно измеряется, в срочном порядке читаем эту статью. Сопротивление измеряется в Омах. Но как же нам узнать сопротивление резистора? Есть прямой и косвенный методы.
Прямой метод он самый простой. Нам нужно взять мультиметр и просто замерять сопротивление резистора. Давайте рассмотрим, как все это выглядит. Я беру мультиметр, выставляю крутилку на измерение сопротивления и цепляюсь к выводам резистора.
измерение сопротивления
Резистор я брал на 1 кОм. Он мне показал 976 Ом, что в принципе тоже нормально, так как у таких резисторов всегда существует некая погрешность.
Косвенный метод измерения заключается в том, что мы будем рассчитывать сопротивление резистора через закон Ома.
формула сопротивления через закон Ома
Поэтому, чтобы узнать сопротивление резистора, нам надо напряжение на концах резистора поделить на силу тока, которая течет через резистор. Все довольно просто!
Допустим, я хочу узнать сопротивление нити накала лампочки, когда она источает свет. Думаю, некоторые из вас в курсе, что сопротивление холодной вольфрамовой нити и раскаленной – это абсолютно разные сопротивления. Я ведь не смогу измерить мультиметром в режиме измерения сопротивления раскаленную вольфрамовую нить лампы накаливания, так ведь? Поэтому, нам как нельзя кстати подойдет эта формула
Давайте же узнаем это на опыте. У меня есть лабораторный блок питания, который показывает сразу напряжение и силу тока, которая течет через нагрузку. Беру лампу, выставляю на блоке питания напряжение, которое написано на самой лампе и подключаю ее к клеммам блока питания.
лампа накаливания потребление тока
Итак, получается, что на выводах лампы сейчас напряжение 12 Вольт, а ток, который течет в цепи, а следовательно и через лампу 0,71 Ампер.
Получаем, что сопротивление раскаленной нити лампы в данном случае составляет
История открытия
Существование электричества было обнаружено ещё в VII веке до н. э. греческими философами, но сам термин «электричество» появился только в 1600 году. Учёный Уильям Гилберт, проводя эксперименты с янтарём, обнаружил его способность притягивать другие вещества (электростатический заряд). Это явление получило название «янтарность». А уже через 60 лет Отто фон Герике создал конструкцию с шаром, надетым на металлический стержень, и фактически изготовил первую электростатическую машину.
В течение следующих лет учёные, экспериментаторы и инженеры открывали всё новые и новые свойства электричества, изучая его природу возникновения. Так, в 1800 году итальянец Алессандро Вольта изобрёл источник тока. Через 20 лет датчанин Кристиан Эрстед открыл электромагнитное взаимодействие, а Андре-Мари Ампер установил связь между электричеством и магнетизмом.
Продолжая исследования Джоуля, Ленца, Фарадея, Гаусса, Ома и Майкла Фарадея, будущий лауреат Нобелевской премии Джозеф Томсон охарактеризовал понятие электричества, введя термин «электрон». Таким образом было установлено, что электричество — это способность физических тел создавать вокруг себя поле, воздействующее на предметы. В каждом теле существуют элементарные частички, которые могут быть как свободными, хаотично перемещающимися, так и привязанными к атомам.
Если же к материалу, имеющему свободные электроны, поднести электромагнитное поле, то движение частичек становится направленным, и возникает электрический ток. Чтобы заряд переместился из одной точки в другую, необходимо затратить работу, которая называется напряжением. При перемещении частички сталкиваются с различными неоднородностями кристаллической решётки. В результате часть их потенциала передаётся этим дефектам, величина заряда электронов уменьшается, а сила тока снижается.