Проверка расцепителей выключателей, не относящихся к категории «бытового и аналогичного назначения» (по ГОСТ Р 50030.2-2010)
Проверка расцепителей перегрузки
Расцепители перегрузки рассматриваемых выключателей подразделяются на:
- расцепители мгновенного действия;
- расцепители с независимой выдержкой времени;
- расцепители с обратнозависимой выдержкой времени (тепловые).
При проверке расцепителей мгновенного действия или с независимой выдержкой времени через каждый полюс выключателя пропустить испытательный ток, равный 90 % уставки по току перегрузки. При этом расцепитель не должен сработать с начала прохождения тока в течение:
- 0,2 с для расцепителей мгновенного действия;
- удвоенной выдержке времени, указанной изготовителем, для расцепителей с независимой выдержкой времени.
Пропустить через каждый полюс ток, равный 110 % уставки по току нагрузки. При этом расцепитель должен сработать в течение:
- 0,2 с для расцепителей с независимой выдержкой времени;
- удвоенной выдержке времени, указанной изготовителем, для расцепителей мгновенного действия.
При проверке расцепителей с обратнозависимой выдержкой времени (тепловых) при контрольной температуре (30 ± 2) °С (холодное состояние полюсов) через последовательно соединенные полюса выключателя пропускают ток, равный 1,05 уставки расцепителя в течение 1 часа. В течение этого времени расцепитель сработать не должен.
По истечении этого времени значение испытательного тока в течение 5 с повышают до 1,3 уставки расцепителя. При протекании этого тока расцепитель должен сработать в течение 2 часов с момента увеличения испытательного тока. Данные испытания требуют больших затрат времени, поэтому проверку соответствия параметров расцепителей с обратнозависимой выдержкой времени данным изготовителя при массовых испытаниях производят в форсированном режиме при условии, что время расцепления должно быть не менее 5 с.
При этом кратность тока, обеспечивающая данное условие, определяется по паспортным данным выключателя по формуле (1) настоящей методики. При проведении испытаний при температуре, отличной от контрольной, результаты необходимо корректировать к температуре 30 °С по указаниям изготовителя.
Подключение и установка ТР
Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.
Тепловое реле ТРН с контролем тока только в двух фазах
По типу подключения тепловые реле можно разделить на две разновидности:
- Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).Реле РТТ, подключенное при помощи жестких пластинчатых перемычек
- Монтируемые непосредственно на контактор магнитного пускателя (современные модели).Реле устанавливается непосредственно на контакторе
Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.
Подключение теплового реле к контактору
Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.
Подстройка выводов под клеммы контактора
Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.
Элемент крепежа на корпусе теплового реле
Специальный паз крепления на контакторе
Механика теплового реле
Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.
Рассмотрим для примера устройство теплового реле LR2 D1314 .
ТР в разобранном виде
Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.
Изгибающаяся биметаллическая пластина
Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.
Система рычагов
Если убрать рычаги, то будут видны контактные группы теплового реле.
Коммутационный узел ТР
Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.
Техническое обслуживание
В период между ремонтами проводится техническое обслуживание электроустройств, которое представляет собой комплекс операций или операцию по поддержанию работоспособности или исправности устройства при пользовании по назначению, ожидании, хранении и транспортировании. Устройство при этом не разбирается.
В типовой объем работ по техническому обслуживанию тепловых реле входят: очистка от ныли и грязи, смазка трущихся частей, ликвидация видимых повреждений, затяжка крепежных деталей, очистка контактов от грязи и наплывов, проверка исправности кожухов, оболочек, корпусов, проверка работы сигнальных и заземляющих устройств.
После снятия кожуха приступают к внутреннему осмотру: очищают детали, проверяют затяжку винтов, гаек, крепящих пружин, контакты, подпятники, магнитопроводы; проверяют надежность внутренних соединений; регулируют механическую часть реле; контакты тщательно очищают и полируют воронилом (пользоваться надфилем или абразивными материалами нельзя).
Далее измеряют сопротивление изоляции мегаомметром 1000 В между электрическими частями реле и корпусом, которое должно быть не менее 10 МОм, проверяют уставки. Если обнаружены дефекты, выходящие за возможность устранения их в лаборатории, реле заменяют новым.
Особенности монтажа
Но при этом тепловое реле срабатывает в отличие от магнитного пускателя не по воле человека, а от перегрузки по току асинхронного двигателя. Его также можно без особых проблем задействовать своими руками в схеме управления асинхронным движком. В связи с этим не будет лишним напомнить умельцам о том, что любые работы по присоединению электрических цепей к сети должны начинаться с гарантированного отключения напряжения в месте подключения с последующим контролем этого индикаторной отвёрткой или тестером.
- Чтобы правильно подключить магнитный пускатель и тепловое реле надо вначале определить величину напряжения, на которое они рассчитаны. Его значение указывается как в техническом паспорте, так и на шильдике, расположенном на корпусе устройства.
- Если указано напряжение 220 В устройство необходимо подключать к фазному напряжению, то есть к фазному и нулевому проводам. Если указано напряжение 380 В для подключения используется линейное напряжение, то есть к фазным проводам двух любых фаз.
- Если напряжение не будет соответствовать паспортным данным устройства, возможна, либо его порча от перегрева, либо неправильная работа по причине недостаточно сильного магнитного поля в катушке управления.
Особенностью работы магнитного пускателя является его контакт, который, замыкаясь, шунтирует кнопку включения его управляющей катушки. Это позволяет выполнять коммутацию электрических цепей кратковременным нажатием кнопки «пуск», что удобно и легко для пользователя. При подключении пускателя надо будет присоединять нормально разомкнутый контакт и нормально замкнутый контакт. Их вид в самом устройстве и на электрической схеме показан на изображении. Они используются для управления катушкой пускателя и располагаются в управляющем блоке пускателя. Он называется «кнопочный пост». В нём установлены две кнопки. Каждая из них приводит в действие: одна нормально замкнутый контакт и одна нормально разомкнутый контакт. Кнопки окрашены обычно в чёрный цвет (используется для пуска или реверса), и в красный цвет (используется для остановки двигателя отключением катушки пускателя).
Защитные характеристики C, B и D автоматов
Поставляем автоматические выключатели ВА47‑29 с номинальными токами от 0,5 до 63 ампер с защитными характеристиками B, C или D.
Введение
- для защиты сетей:
- от коротких замыканий – для этого встроен электромагнитный расцепитель;
- от перегрузок – для этого встроен тепловой расцепитель;
- для ручного включение и отключения питания – для этого есть привод (рукоятка).
Тепловой и электромагнитный расцепитель установлен в каждом полюсе автомата и вместе их называют комбинированным расцепителем.
Характеристика C, B или D определяет силу тока короткого замыкания, при которой произойдёт мгновенное защитное срабатывание, а следовательно, места применения автомата с конкретной характеристикой. Срабатывание вызывает электромагнитный расцепитель.
Слева фотография модульных выключателей ВМ63 с разбором надписей («что есть что»).
Отличия автоматических выключателей с характеристиками B, C и D
Тип защитной характеристики | Мгновенное отключение при коротком замыкании из диапазона | Предпочтительное применение автоматического выключателя | Нагрузки |
B | (3-5)·In |
|
резистивные |
C | (5-10)·In |
|
резистивные, индуктивные с низким пусковым током |
D | (10-50)·In |
|
индуктивные с высоким пусковым током |
где In – номинальный ток автоматического выключателя.
Примеры:
- Автомат на номинальный ток In = 6 ампер с характеристикой B: не сработает* при коротком замыкании 18 ампер (3·In), но мгновенно отключится при коротком замыкании 30 ампер (5·In) и выше.
- Автомат на номинальный ток In = 16 ампер с характеристикой C: не сработает* при коротком замыкании 80 ампер (5·In), но мгновенно отключится при коротком замыкании 160 ампер (10·In) и выше.
- Автомат на номинальный ток In = 50 ампер с характеристикой D: не сработает* при коротком замыкании 500 ампер (10·In), но мгновенно отключится при коротком замыкании 2500 ампер (50·In) и выше.
*Под словами «не сработает» понимаем не сработает под воздействием электромагнитного расцепителя мгновенного действия. Но есть тепловой расцепитель, который нагреется в течение нескольких секунд и отключит сеть.
При этом стандарт не указывает как будет вести себя выключатель в самом диапазоне (заложена погрешность). Испытания проводят только в граничных положениях (согласно таблице 6 на странице 19 стандарта ГОСТ 50345‑99):
- нижняя граница (3, 5 и 10 от In соответственно) – отключения не происходит в течение 0,1 секунды;
- верхняя граница (5, 10 и 50 от In соответственно) – происходит защитное срабатывание в течение 0,1 секунды.
Характеристика B автоматического выключателя
- протяжённых кабельных линий;
- цепей с нагревательным элементом (ТЭНом, электрической печью, бойлером);
- вторичных цепей или сетей с большим сопротивлением и низким током (из-за чего токи короткого замыкания низкого уровня):
- сигнализации;
- управления;
- измерения.
Характеристика C автоматического выключателя
- квартирные и офисные розетки;
- освещение на кухне, в спальнях; в ванной, в кабинете, на рабочем месте;
- отдельных потребителей (без мощных двигателей).
Характеристика D автоматического выключателя
- стиральных машин;
- посудомоечных машин;
- насосов для забора питьевой воды;
- сварочных аппаратов.
Почему подходят только автоматы с характеристикой D? В момент запуска электродвигателя появляются пусковые токи, которые больше номинального (рабочего) в 5‑7 раз. После разгона потребляемый ток равен номинальному. Если установить выключатель с характеристикой С (отключение короткого замыкания в диапазоне 5‑10 значений номинального тока), он «спутает» пусковой ток с коротким замыканием и отключит сеть. Чтобы не происходило ложных срабатываний применяют выключатели с защитной характеристикой D.
Маркировка тепловых реле
В маркировке указывается большинство важных характеристик ТР. Пример обозначения: РТЛ-Х1Х2Х3-Х4-Х5А-Х6А-Х7Х8, где
- РТЛ – тип теплового реле;
- Х1 – ном.ток, 1 – до 25 А, 2 – до 100 А, 3 – до 250 А, 4 – до 510 А;
- Х2– 3 цифры (условно), обозначающие диапазон токовой уставки;
- Х3–литера, характеризующая исполнение;
- Х4– способ возврата: 1 – ручной, 2 – самовозврат;
- Х5 – Iном, А;
- Х6 – диапазон уставки по току, А;
- Х7– климатическое исполнение;
- Х8– торговая марка.
Тепловое реле – эффективный элемент защиты электродвигателей и другого электрооборудования, который выгодно отличается от входного автоматического выключателя тем, что не подвержен ложным срабатываниям при кратковременных скачках тока.
Устройство и принцип работы
Термореле (ТР) предназначено для обеспечения защиты электродвигателей от перегрева и преждевременного выхода из строя. При долговременном запуске электродвигатель подвержен токовым перегрузкам, т.к. во время пуска происходит потребление семикратного значения тока, приводящего к нагреву обмоток. Номинальный ток (Iн) — сила тока, потребляемая двигателем при работе. Кроме того, ТР увеличивают срок эксплуатации электрооборудования.
Тепловое реле, устройство которого составляют простейшие элементы:
- Термочувствительный элемент.
- Контакт с самовозвратом.
- Контакты.
- Пружина.
- Биметаллический проводник в виде пластины.
- Кнопка.
- Регулятор тока уставки.
Термочувствительный элемент является датчиком температуры, служащий для передачи тепла на биметаллическую пластину или другой элемент тепловой защиты. Контакт с самовозвратом позволяет при нагреве мгновенно разомкнуть цепь питания электрического потребителя для избежания его перегрева.
Пластина состоит из двух видов металла (биметалл), причем один из них обладает высоким температурным коэффициентом расширения (Kр). Они скреплены между собой при помощи сварки или проката при высоких значениях температуры. При нагреве изгибается пластина тепловой защиты в сторону материала с меньшим Kр, а после остывания пластина принимает исходное положение. В основном пластины изготавливаются из инвара (меньшее значение Kр) и немагнитной или хромоникелевой стали (больший Kр).
Кнопка включает ТР, регулятор тока уставки необходим для установки оптимального значения I для потребителя, причем его превышение приведет к срабатыванию ТР.
Принцип действия ТР основан на законе Джоуля-Ленца. Ток представляет собой направленное движение заряженных частиц, которые сталкиваются с атомами кристаллической решетки проводника (эта величина является сопротивление и обозначается R). Это взаимодействие вызывает появление тепловой энергии, получаемой из электрической. Зависимость длительности протекания от температуры проводника определяется по закону Джоуля-Ленца.
Формулировка этого закона следующая: при прохождении I по проводнику количество теплоты Q, выделяемой током, при взаимодействии с атомами кристаллической решетки проводника прямо пропорционально квадрату I, величине R проводника и времени воздействия тока на проводник. Математически можно записать следующим образом: Q = a * I * I * R * t, где a — коэффициент преобразования, I — ток, протекающий через искомый проводник, R — величина сопротивления и t — время протекания I.
При коэффициенте a = 1 результат расчета измеряется в джоулях, а при условии, что a = 0.24, результат измеряется в калориях.
Нагрев биметаллического материала происходит двумя способами. При первом случае I проходит через биметалл, а во втором — через обмотку. Изоляция обмотки замедляет поток тепловой энергии. Термореле нагревается сильнее при высоких значениях I, чем при контакте с термочувствительным элементом. Происходит задержка сигнала срабатывания контактов. В современных моделях ТР используются оба принципа.
Нагрев биметаллической пластины теплового устройства защиты производится при подключенной нагрузке. Комбинированный нагрев позволяет получить устройство с оптимальными характеристиками. Пластина нагревается при помощи тепла, выделяемого I при прохождении через нее, и специальным нагревателем при I нагрузки. Во время нагрева биметаллическая пластина деформируется и воздействует на контакт с самовозвратом.
Watch this video on YouTube
Условия использования реле тепловых ТРН
Долгая и исправная работа реле тепловых серии ТРН во многом зависит от точности соблюдения условий эксплуатации прибора:
- реле нельзя применять в качестве защиты от коротких замыканий;
- располагать прибор нужно на вертикальной поверхности так, чтобы зажимы цепи управления находились сверху (допустимо отклонение от вертикали не более 10°;
- прибору противопоказана высокая концентрация пыли в воздухе;
- необходимо оградить реле от попадания капель воды, масел или эмульсий;
- нужно исключить риск механического повреждения реле;
- прибору противопоказаны вибрационные нагрузки, чтобы не было ложных срабатываний (не устанавливать на общих панелях с электромагнитными аппаратами на высокие номинальные токи);
- беречь прибор от нагревания, устанавливая дальше от нагревательных приборов и другой электроаппаратуры.
Виды автоматических выключателей
Самая узнаваемая для пользователей – бытовая серия модульных автоматических выключателей. Они устанавливаются на DIN-рейку и не имеют регулировок характеристик срабатывания. Все уставки расцепителей у модульной серии автоматических выключателей и дифференциальных автоматов отсчитываются от их номинального тока.
Модульный автоматический выключатель
Ток отсечки зависит от буквенного обозначения, стоящего перед значением номинального тока.
Буквенное обозначение | Кратность тока отсечки |
В | 2-5 от Iном |
С | 5-10 от Iном |
D | 10-20 от Iном |
Это означает, что реальное значение тока, при котором сработает автомат, лежит в некотором диапазоне. Завод-изготовитель гарантирует, что это будет так.
Тепловые расцепители автоматов модульной серии начинают работу при превышении номинального тока. Время, по истечении которого произойдет отключение, зависит от кратности проходящего через автомат тока перегрузки к номинальному. У автоматических выключателей разных производителей время отключения отличается. Определить его можно по характеристикам, которые определяются по справочным данным на данную серию автоматов. Но и эта величина имеет разброс, поэтому характеристика отключения представляет собой не одну кривую линию, а их семейство, обозначаемое заштрихованной зоной. При определенном токе через автомат ожидаемое время срабатывания лежит в диапазоне, определяемое на границах этой зоны.
Время-токовые характеристики модульных выключателей
До сих пор в распределительных щитках встречаются автоматы, имеющие в своем составе либо только тепловую, либо максимальную защиту. Проверка этих устройств наиболее актуальна, так как их электромеханическая часть отслужила много лет, часть деталей заржавела и недееспособна.
Устаревшие модели выключателей
Следующий вид автоматических выключателей имеет нерегулируемую отсечку и регулируемую тепловую защиту. Для этого на его передней панели есть регулятор, с помощью которого номинальный ток теплового расцепителя изменяется в пределах 0,5 – 1,0 от номинального тока автомата. Такие автоматы применяются для защиты электродвигателей и точной настройки на ток защищаемой кабельной линии, обеспечения селективности защит от перегрузки. Регулятором выставляется ток, при котором начинается работа тепловой защиты. Положение регулятора отражается и на семействе характеристик выключателя.
Автомат с регулируемой тепловой защитой
Еще сложнее конструкция выключателя, имеющего кроме регулируемого теплового расцепителя еще и регулируемый электромагнитный. Есть модели, в которых регулировка осуществляется механически: изменением усилия пружины, противодействующей усилию, создаваемому катушкой отключения. Такие устройства встречаются у выключателей старого образца.
У современных автоматов регулировки выполняются при помощи встроенного блока защиты. Это комплекс, включающий в себя датчики тока, установленные на всех трех фазах выключателя, и полупроводниковое устройство, обрабатывающее полученные сигналы.
Автомат с полупроводниковым расцепителем
Состав защит, устанавливаемых в максимальной комплектации в такие автоматы:
- максимально токовая отсечка с регулируемой независимой от тока выдержкой времени;
- защита от перегрузки с регулируемым стартовым током и характеристикой срабатывания по времени;
- защита от токов однофазного замыкания, с регулируемой уставкой и выдержкой по времени.
Выводы и полезное видео по теме
Видео #1. Обзор принципа действия, типов и основных неисправностей пускозащитного реле:
Видео #2. Признаки поломок распространенного пускового реле РКТ. Подключение внешнего конденсатора для компенсации нестабильного напряжения:
Видео #3. Прозвон двигателя и реле. Ремонт катушки:
Несложная конструкция пускового реле позволяет самостоятельно находить неисправности и легко устранять их. Для этого не нужны глубокие знания в электрике или специальный инструмент.
Однако необходимо соблюдать пунктуальность, так как от качества проведенных работ зависит функциональность дорогостоящего оборудования.
Хотите рассказать о том, как подбирали пусковое реле для восстановления работоспособности холодильного агрегата? Располагаете полезными сведениями по теме статьи, которыми стоит поделиться с посетителями сайта? Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фотоснимки, задавайте вопросы.
Основным средством защиты электроприводов от перегрузок в настоящее время являются тепловые реле, а также автоматические выключатели с тепловыми расцепителями. Наибольшее распространение получили двухполюсные реле типа ТРН и ТРП, а также трехполюсные — РТЛ, РТТ. Последние имеют улучшенные характеристики и обеспечивают защиту от несимметричных режимов.
При 20 % перегрузке тепловое реле должно отключать электродвигатель за время не более 20 мин, а при двукратной перегрузке – примерно за 2 мин. Однако это требование часто не выполняется по той причине, что номинальный ток нагревательного элемента теплового реле не соответствует номинальному току защищаемого электродвигателя. На работу тепловых реле существенное влияние оказывает температура окружающей среды.
Основным параметром тепловых реле является время-токовая защитная характеристика, т. е. зависимость времени срабатывания от величины перегрузки.
Первая из них – для реле, находящегося в холодном состоянии (разогрев током начинается, когда реле имеет температуру, равную температуре окружающей среды), и вторая – для реле, находящегося в горячем состоянии (режим перегрузки наступает после работы реле в течение 30 – 40 мин под номинальным током).
Рис. 1. Защитные характеристики теплового реле: 1 – зона срабатывания из холодного состояния, 2 – зона срабатывания из горячего состояния
Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле должно настраиваться на специальном стенде. При этом исключается ошибка из-за естественного разброса номинальных токов заводских нагревательных элементов.
При проверке и настройке тепловой защиты на стенде используется так называемый метод фиктивных нагрузок. Через нагревательный элемент пропускают ток пониженного напряжения, имитируя таким образом реальную нагрузку, и по секундомеру определяют время срабатывания. В процессе настройки необходимо стремиться к тому, чтобы 5. 6-кратный ток отключался через 9 – 10 с, а 1,5-кратный через 150 с (при холодном состоянии нагревателя).
Для настройки тепловых реле можно использовать серийно выпускавшиеся cпециализированные стенды.
На рис. 2 показана схема такого устройства. Приспособление состоит из маломощного нагрузочного трансформатора TV2, к вторичной обмотке которого подключается нагревательный элемент теплового реле КК, а напряжение первичной обмотки плавно регулируется автотрансформатором TV1 (например ЛАТР-2). Ток нагрузки контролируется амперметром РА, включенным во вторичную цепь через трансформатор тока.