Осциллограмма

Содержание

Устройство и принцип работы

Осциллограф своими руками

Основной элемент аналогового осциллографа – специализированная ЭЛТ (электронно-лучевая трубка), которая делает возможным визуальное представление изучаемого сигнала. Он поступает на входной делитель (определяет диапазон измеряемых значений), усиливается и синхронизируется с генератором развертки, затем попадает на оконечный усилитель и входы ЭЛТ, отображение проходит в реальном времени. Конкретная реализация зависит от производителя, но принцип действия остается неизменным.

Осциллограмма
Функциональная схема осциллографа

Цифровые приборы устроены по-другому: пользователь видит уже преобразованные в цифру данные, полученные от АЦП (аналого-цифрового преобразователя) и записанные в буферную память, поэтому имеет возможность просмотреть динамику изменения сигнала не только после запуска, но и до пускового импульса. Есть возможность сохранить информацию для последующей обработки на компьютере.

Органы управления

О том, как пользоваться осциллографом при проведении измерений, проще всего рассказать на примере аналоговых приборов, которые до сих пор не потеряли своей актуальности и которым в отдельных случаях даже отдаётся предпочтение. Знакомство с этим относительно сложным электронным устройством следует начать с изучения его лицевой панели, на которую выводятся все необходимые органы управления.

Панель управления

На ней можно различить несколько зон, ответственных за определённую функцию из полного набора возможностей этого прибора

Прежде всего, обращает на себя внимание экран устройства, на котором отображаются все параметры измеряемого сигнала (его форма, размах и длительность)

Помимо этого, на лицевой панели выделяются следующие функциональные зоны:

  • Модуль развёртки, задающий режимы измерения сигнала по его частотной характеристике (обозначается как «Длительность»);
  • Усилительный блок, ответственный за чувствительность измерения («Усиление»);
  • Органы управления положением отображения сигнала на экране устройства, позволяющие перемещать его как по вертикали, так и по горизонтали (вращающиеся ручки с соответствующими стрелками);
  • Модуль синхронизации, задающий способ запуска развёртки, которая может быть автоматической, ручной или принудительной.

К основному функциональному набору следует отнести дополнительные регуляторы и переключатели, расширяющие возможности осциллографа до требуемого в каждом конкретном случае уровня. Знакомство с их назначением поможет определиться с тем, как работать с осциллографом в тех или иных ситуациях.

Обратите внимание! В различных моделях набор вспомогательных опций может иметь заметные отличия. Отличаться может и их состав: более «скромный» для простых и дешёвых образцов изделий и значительно расширенный – для моделей профессионального уровня

Отличаться может и их состав: более «скромный» для простых и дешёвых образцов изделий и значительно расширенный – для моделей профессионального уровня.

Измерение сигнала

Осциллограмма

Порядок измерения параметров периодического сигнала следующий:

  • Зажим «земля» фиксируется на общем проводе схемы, а сигнальный щуп присоединятся в контролируемое место схемы, где будут сниматься показания.
  • С помощью регулятора устанавливаем масштаб по вертикали таким образом, чтобы полезная информация помещалась на экране целиком и занимала большую ее часть.
  • Регулятором частоты добиваемся того, чтобы на экране помещалось несколько периодов сигнала.
  • Точной подстройкой частоты добиваемся стабильного изображения, чтобы картинка не плыла.
  • Теперь, когда на экране установлено стабильное изображение, можно определить по экранной шкале его форму, амплитуду и период.
  • Для более точного измерения можно использовать ручки смещения по вертикали и по горизонтали, подводя интересующие элементы изображения под перекрестье линий сетки.

Для того чтобы быть уверенным в точности показаний, необходимо соблюдать несколько простых требований:

  • после включения осциллографа на ЭЛТ необходимо дать ему прогреться в течение 10-15 минут;
  • после каждого включения прибор необходимо откалибровать. Большинство моделей имеет встроенный калибровочный генератор, выдающий прямоугольный сигнал с фиксированной амплитудой и частотой;
  • прибор должен быть заземлен;
  • сигнал с очень низкой частотой (до 10 Гц) при подключении через емкостный вход сильно искажается. Работа в этом режиме не рекомендуется.

Лучший способ обучения — практическая работа. Получив первые навыки работы с простым аналоговым осциллографом, в дальнейшем можно будет приступать к более сложным устройствам. Которые будут иметь дополнительные функции и расширенные возможности. Главное — наличие желания и интереса к электронной технике.

Типичные ошибки при выборе и работе с осциллографом

  • Огромное количество ошибок при пользовании осциллографом возникает по причине того, что пользователь сам не знает о всех особенностях и возможностях прибора. Потому перед работой необходимо не только изучить инструкцию, но и посоветоваться с более опытными пользователями. В том числе и на специализированных интернет-форумах.
  • Для работы с гальванически изолированными узлами оборудования или с высоким напряжением ошибкой является использование осциллографа, каналы которого зависимы между собой. Также каждый канал должен быть хорошо изолирован от сети питания самого осциллографа и от других каналов прибора. К серьезным ошибкам, недопустимы для соблюдения точности измерений аналоговым осциллографом, может привести применение неправильно компенсированного пробника.

Аналоговые осциллографы

Типичный осциллограф Tektronix 465 конца 1970- х годов .

Этот тип устройства находится в процессе устаревания, потому что он, как правило, позволяет наблюдать только периодические напряжения . Его все чаще заменяют цифровые осциллографы.

В этом параграфе описывается только общая информация, касающаяся калибровки напряжения и временной развертки аналогового осциллографа.

Внутренняя работа осциллографа

Фигура Лиссажу на осциллографе с  фазовым сдвигом 90 градусов между входами X и Y.

Измеряемый сигнал отображается на электронно-лучевой трубке, как правило, зеленого цвета . Осциллограмма определяется двумя составляющими: горизонтальной и вертикальной.

  • Горизонтальная составляющая находится на оси абсцисс  : это время , или напряжение (режим XY).
  • Вертикальная составляющая находится по оси ординат  : это напряжение, прикладываемое пользователем.

Режим XY позволяет, среди прочего:

  • для визуализации характеристик диполя при условии, что одно из напряжений является изображением тока, протекающего через диполь;
  • визуализировать фазовый сдвиг между двумя синусоидальными напряжениями;
  • для создания кривой «крутящий момент как функция скорости вращения», позволяющей построить характеристику асинхронного электродвигателя и определить используемый .
Популярные статьи  Схема стабилизатора напряжения 220в своими руками

Временная база

Сигналы визуализируются мультитрековым осциллографом.

Развертка времени характеризуется пилообразным напряжением, приложенным к двум вертикальным пластинам (см. Диаграмму). В то же время электронная пушка проецирует пучок электронов между двумя пластинами (плотность пучка соответствует интенсивности света):

  • электрическое поле, создаваемое пилообразным напряжением между пластинами, заставляет электроны отклоняться от своей первоначальной траектории;
  • абсцисса новой траектории напрямую зависит от значения пилообразного напряжения;
  • чтобы пользователь мог видеть это напряжение, электроны ударяют по флуоресцентному экрану осциллографа, образуя светящееся пятно, называемое пятном;
  • под действием пилообразного напряжения пятно движется с постоянной скоростью слева направо, а затем внезапно возвращается влево, это сметание;
  • для того, чтобы наблюдатель мог видеть характерную форму переменного тока, необходимо, чтобы рисунки, нарисованные пятном, точно накладывались от одной развертки к другой, это роль триггера, который запускает развертку, когда вертикаль напряжения достигает определяемое пользователем значение.

Пользовательское напряжение

Так же, как и для временной развертки, визуализация напряжения, подаваемого пользователем на вход осциллографа, осуществляется с помощью горизонтальных пластин (см. Диаграмму), которые отклоняют траекторию электронов по вертикали.

Положение ординаты напрямую зависит от напряжения, подаваемого пользователем. Поскольку временная развертка работает непрерывно, входное напряжение (ранее усиленное) изменяется с течением времени.

Использование дифференциальных входов

При использовании осциллографов с питанием от электрической сети, которую мы хотим визуализировать, могут возникнуть различные проблемы:

  • нарушение изоляции между осциллографом и его источником питания, которое могло вызвать короткое замыкание во время измерений;
  • нарушение изоляции между несколькими входами осциллографа. Например, если осциллограф используется для визуализации напряжения в последовательной цепи RLC , и этот осциллограф измеряет напряжение на выводах сопротивления и напряжение на выводах конденсатора, различные массы измерений будут доведены до такой же потенциал., что может быть опасно.

Измерение частоты осциллографом

1. Метод задержанной развертки

При таких измерениях главные источники погрешности кроются в нестабильности крутизны (непостоянстве угла наклона) и нелинейности развертывающего напряжения. В первом случае скорость перемещения луча вдоль горизонтальной оси экрана отличается от скорости, при котором определяется номинальный коэффициент развертки. Поэтому реальный коэффициент развертки отличается от номинального, используемого для перевода геометрического размера, фиксируемого с помощью масштабной сетки, в интервале времени. Во втором случае скорость перемещения луча по горизонтали получается неодинаковой на различных участках экрана в следствии нелинейности развертывающего напряжения и , следовательно, точность измерения зависит от того, в каком месте экрана выполняются измерения.

Метод задержанной развертки применяется для определения точной длительности импульса, длительности, которая много превышает время нарастания и спад фронтов. Для повышения точности измерения центр (начало координат) масштабной сетки экрана используется в качестве опорной точки. Скорость задержанной развертки выбирается такой, чтобы получить растянутые изображения фронта и среза исследуемого импульса.

Осциллограмма

Для реализации временной развертки применяем ∆ временную схему (блок развертки).

Осциллограмма

ГОР – генератор основной развертки;

ГЗР – генератор задержанной развертки;

ИОН – источник опорного напряжения;

Генератор основной развертки запускается по заднему фронту входного импульса (измеряемого). Далее, вращением ручек резисторов изменяем U1 так, чтобы импульс на выходе верхнего компаратора появлялся непосредственно перед началом фронта измеряемого импульса. Компаратор выдает сигнал на запуск ГЗР, который выдает короткие импульсы треугольной формы с большой крутизной переднего фронта ( на экране появляется передний фронт). Чтобы по амплитуде совместить с координатой надо применять PV с закрытым входом на осциллографе. Нижний компаратор сравнивает напряжение основной развертки с суммой напряжений U1 и U2.

Осциллограмма

2. Измерение частоты методом круговой развертки осциллографа

Метод применяется, когда частота образцового генератора отжимается от частоты измерительного генератора (сигнала) примерно на один порядок. Если напряжение одной частоты (образцовой) использовать для получения круговой развертки на экране осциллографа, а напряжение другой (большей частоты) подать на электрод (модулятор), управляющий яркостью свечения трубки, то в положительный полупериод этого напряжения яркость развертки будет увеличиваться, а в отрицательных уменьшаться. В результате окружность получится прерывистой, причем число темных (или светлых) штрихов этой окружности будет равно отношению частот (n). При целом числе n осциллограмма будет неподвижной. При этом сигнал, имеющий меньшую частоту, подается на вертикальную и горизонтальную пластины осциллографа по схеме:

Второй сигнал подается на вход Z осциллографа. Z – канал управления яркостью. Если частоты не кратны, то круг будет вращаться. Если за период частоты F1

Классификация

Так как осциллоскоп работает с входящими сигналами, то по виду обработки импульсов приборы делятся на:

  • аналоговые;
  • цифровые.

В аналоговых аппаратах применяются ЭЛТ с электростатическим смещением.

Осциллограмма

Цифровые аппараты оснащены жк-дисплеем. Они имеют память, позволяющую рассматривать уже зафиксированные сигналы, делать их скриншоты. ЖК-цветной монитор способствует улучшению восприятия картинки.

Следующее деление можно провести по числу лучей:

  • однолучевые;
  • двухлучевые;
  • многолучевые.

Важно! N-лучевой прибор показывает сразу n-графиков на дисплее. У него n-входов. Но количество входов (каналов) не всегда равно количеству лучей

Так, двухканальный измеритель может отображать два сигнала одним лучом, но не одновременно

Но количество входов (каналов) не всегда равно количеству лучей. Так, двухканальный измеритель может отображать два сигнала одним лучом, но не одновременно.

Осциллограмма

Цифровые осциллографы можно разделить на модели:

  • стробоскопические;
  • запоминающие;
  • люминофорные;
  • виртуальные.

Стробоскопические осциллографы сжимают спектр исследуемого сигнала путём моментального стробирования в определённой точке. С каждым новым появлением сигнала точка смещается по кривой, пока не простробируется сигнал. На дисплей выдаётся преобразованная кривая, повторяющая форму основного сигнала, но состоящая из мгновенных значений.

В запоминающих моделях цифровой формат информации позволяет сохранять результаты измерений в памяти или выводить на печать. У большинства моделей в наличии накопитель, где можно хранить картинки в виде файлов.

Технология «цифрового люминофора» даёт возможность имитировать изменение интенсивности картинки, присущее аналоговым моделям, но уже в цифровом формате. Люминофорные осциллографы выдают на дисплей модулированные сигналы в мельчайших подробностях, как и аналоговые устройства. При этом они обеспечивают измерение, сравнение и хранение, как цифровые запоминающие модели.

Отдельный класс виртуальных осциллографов может быть внешним или внутренним дополнительным гаджетом на базе ISA или PCI карт. ПО любого виртуального осциллоскопа разрешает полностью управлять прибором и предоставляет линейку сервисных опций: цифровая фильтрация, экспорт и импорт данных и иные возможности.

Двухканальный прибор

Модели типа «два канала – один луч» имеют два канала вертикальной развёртки и однолучевую ЭЛТ. Конструктивно это переключаемые электронным переключателем входы Y1 и Y2. Переключатель поочерёдно соединяет выходные сигналы каналов с пластинами вертикального отклонения.

Популярные статьи  Какое сечение кабеля необходимо для подключения трехфазного котла на 9 квт?

Что такое осциллография

Осциллография представляет собой медицинский метод, с помощью которого происходит регистрация колебаний стенок артерий.

На основе этих колебания на приборе – осциллографе – отображается диаграмма, которая позволяет сделать вывод о состоянии больного.

Измерения можно проводить в различных условиях, и в процессе измерений можно получить наглядное отображение пульсовых колебаний в виде кривой.

Показателем осциллограммы считается осциллометрический индекс – максимальная амплитуда. У взрослых величина осциллометрического индекса колеблется в числах от 12 до 30 мм.

Во всех остальных случаях прибор прикрепляется к пациенту с помощью манжеты, в которую закачивается воздух.

Устройство и принцип работы осциллографа

Среди всех измерительных приборов осциллограф считается одним из самых сложных в плане своего устройства. И не зря. Ведь по принципу работы он сравним с телевизором. Разница разве что в виде сигнала, обрабатываемом этими устройствами.

Осциллограмма

В основе лежит электронно-лучевая трубка. На ней отображается состояние входного электрического сигнала. Чтобы изображение совпадало с формой колебаний, электронный луч осциллографа управляется генератором строчной развёртки. (картинка)

У осциллографа электронно-лучевая трубка в своём устройстве имеет две пары отклоняющихся пластинок. Именно они и управляют положением электронного луча на экране.

Первая пара – горизонтальная. Она отвечает за отклонение луча в этой плоскости. На неё подаётся напряжение пилообразной формы от генератора горизонтальной развёртки. Потом напряжение увеличивается. Это вызывает отклонение луча по горизонтали. Луч вернётся назад и начнёт движение заново во то время, когда импульс резкой пойдёт на спад. Сам момент возвращения луча виден быть не должен. На экран в это время подаётся напряжение гашения луча.

Чтобы лучше понять принцип работы устройства, можно изучить блок-схему осциллографа. По ней в том числе становится понятно, что в состав устройства входят горизонтальный и вертикальный каналы.

Осциллограмма

Горизонтальная развёртка

Канал горизонтального подключения подключается к генератору развёртки. Он вырабатывает сигналы горизонтального отклонения лучей. Генератор Х (развёртки) работает в нескольких режимах.

  • Внутренняя синхронизация. Автоколебания с выставленной вручную частотой;
  • Внешняя синхронизация. От входных импульсов запускается генератор. Она включает в себя три режима: запуск от внешнего источника, по фронту импульсов или их спаду;
  • Синхронизация от питания (50Гц);
  • Ручной запуск. Так же называется однократным.

При исследовании стабильных сигналов удобно использовать режим внутренней синхронизации. В этих условиях изображение будет неподвижным. Чтобы увеличить стабильность можно организовать захват частоты на входе генератором развёртки.

Также этот режим называется ждущим. В нём запуск генератора происходит в тот момент, когда входной сигнал достигает определённого уровня. Или от внешнего источника. В режиме внешней синхронизации удобно исследовать не очень стабильные колебания, особенно если есть синхронизация между генератором развёртки и схемы от одного источника колебания. Прибор поддаётся регулировка, чтобы точно установить уровень, на котором генератор запускается.

Если синхронизация происходит от сети питания, то запуск развёртки будет синхронизирован с колебанием напряжения сети. Так что синхронизация от сети так же предусмотрена, чтобы наблюдать за помехами и искажениями. Ручная синхронизация подходит для исследования различных непериодических сигналов. К примеру, в логических схемах.

Вертикальная развёртка

Канал вертикального отклонения называется каналом Y, по аналогии с горизонтальной осью Y в системе координат. В нём входной исследуемый сигнал обрабатывается. Сигнал этот поступает в канал через аттенюатор. Аттенюатор – это ступенчатый регулятор уровня. Это делается для того, чтобы амплитуда параметра, который измеряют, не превышала допустимый уровень. А картинка тем временем не выходила за пределы экрана. Канал Y может передать сигнал на генератор горизонтального отклонения для его синхронизации.

Обычно канал вертикального отклонения работает в открытом режиме. Это значит, что само отклонения луча будет чётко совпадать с уровнем сигнала. Когда есть постоянная составляющая, то это мешает наблюдению за колебаниями. Происходит это из-за того, что картинка будет слишком смещена к границам экрана сверху или снизу. Так же она может вообще выходить за границы. Эту постоянную составляющую можно убрать, если включить режим закрытого входа. Или настроить аттенюатор под размеры экрана.

Про закрытый вход. Сигнал поступает через конденсатор, не создающий препятствия для переменного напряжения. Тогда оба канала обладают оконченными усилителями, формирующими нужные уровни сигналов, которые подаются на отклоняющие пластины.

Что можно сказать по результатам

По результатам осциллограммы специалистом делается вывод об общем физическом состоянии пациента. А также о том, какие сосуды и в каком месте имеют повреждения в случае обнаружения заболевания.

В случае если осциллограмма представляет собой стандартное колебание амплитуд, то можно сказать о том, что человек абсолютно здоров.

Данный метод можно считать простым и наглядным. К тому же, он легко переносится больными, если только у них нет проблем с кровообращением в кишечнике.

В этом случае у пациентов при сдавливании конечности манжетой могут проявиться боли, которые затруднят исследование.

Классификация

По виду используемой схемотехники (электронных компонентов) различают цифровые и аналоговые измерительные приборы. Простые модели показывают только динамическую картинку. Современные – оснащены функцией запоминания для обеспечения лучших условий при изучении сложных процессов. Некоторые электронные осциллографы способны выводить на экран до 14 и более сигналов одновременно. Для исследования оптических сигналов производители выпускают стробоскопические высокоскоростные модификации.

Отдельно следует отметить специализированные приставки, которые подключаются через стандартный порт или коммуникационную плату к ноутбуку (стационарному компьютеру). Такое комбинированное оборудование можно перенастроить с применением специализированного программного обеспечения.

Осциллограмма
Плагин vst обеспечивает удобство обработки волновых процессов в звуковом диапазоне

Принцип функционирования

Общий принцип работы прибора прост. Он регистрирует любое изменение напряжения испытуемого сигнала и выводит его на дисплей. Со времён самописца, придуманного Андре Блондалем, где индуктивная катушка управляла колебаниями маятника, идея претерпела изменения. После изобретения электронно-лучевой трубки (ЭЛТ) прибор стал полноценным измерителем. Органы управления находятся на передней панели.

Осциллограф с1 73

Поданный на вход сигнал может иметь разную амплитуду. Расположенный на передней панели регулятор «В/дел», позволяет растягивать или уменьшать получаемую картинку по оси Y. Ручка «длительность» изменяет скорость движения луча по дисплею. Это частота развёртки.

К сведению. Луч постоянно перемещается слева на право, вертикальное отклонение ему задаёт импульс, приходящий на вход. В результате на дисплее получается синусоида или иные колебания.

Популярные статьи  Что такое магнитопровод и где он используется

С помощью частоты развёртки добиваются остановки картинки. Когда она близка или совпадает с частотой сигнала, то картинка замирает и становится статичной. Вот главный принцип работы прибора.

Определение частоты по осциллограмме

Определение частоты по осциллограмме

Сообщение БАРС » 15 ноя 2011, 20:24

Давно хотел создать тему для всех, да и самому немного разобраться. Как известно в импульсной электронике без осциллографа делать вообще нечего. Тут я расскажу как узнать частоту с помощью осциллографа.

Частота = 1 / период импульса.

Период импульса = диапазон положения ручки «время» на осциллографе * количество клеток периода импульса на осциллограмме.

Предлагаю рассмотреть три осциллограммы и рассчитать частоту: (На всех трёх осциллограммах ручка «время» у меня была в положении «0,05 мкс» )

Первый пример, расписываю очень подробно:

Период импульса = 0,05 мкс * 4,2 клетки = 0,21 мкс 0,21 мкс / 1000 = 0,00 021 мс 0,00 021 мс / 1000 = 0,0 000 0021 с

Частота = 1 / 0,0 000 0021 с = 4 761 900 Гц 4 761 900 Гц / 1000 = 47 619 кГц 47 619 кГц / 1000 = 4,7619 МГц

Второй пример, кратко:

Период импульса = 0,05 мкс * 2 клетки = 0,1 мкс

Частота = 1 / 0,1 мкс = 10 МГц

Третий пример (прошу прощения за плохую синхронизацию, мой осциллограф уже не «тянет» столь высокую частоту):

Период импульса = 0,05 мкс * 1,2 клетки = 0,06 мкс

Частота = 1 / 0,06 мкс = 16,666 МГц

Всем спасибо. Прошу ткнуть носом в имеющиеся ошибки и опечатки Уважаемого Админа персонально прошу прокомментировать данный пост

Re: Определение частоты по осциллограмме

Сообщение ec73 » 15 ноя 2011, 23:36

Очевидные вещи комментировать — все верно

Считаем скважность: Период в первом случае равен 4,2 клетки Длительность — 2,2 клетки. Скважность равна 2

Ну примерно Или коэффициент заполнения — 0,5 (duty=50%)

Re: Определение частоты по осциллограмме

Сообщение rhf-admin » 16 ноя 2011, 09:45

Re: Определение частоты по осциллограмме

Сообщение БАРС » 22 ноя 2011, 20:03

Re: Определение частоты по осциллограмме

Сообщение rhf-admin » 23 ноя 2011, 01:01

Re: Определение частоты по осциллограмме

Сообщение БАРС » 23 ноя 2011, 01:37

Re: Определение частоты по осциллограмме

Сообщение rhf-admin » 23 ноя 2011, 12:06

Re: Определение частоты по осциллограмме

Сообщение БАРС » 23 ноя 2011, 13:01

Тогда если представим что я измеряю пульсации на этой осциллограмме download/file.php?id=523&mode=view получается что размах пульсаций здесь = 4,6 клетки; амплитуда пульсаций = 2,3 клетки; двойная амплитуда (первый раз такой термин услышал ) пульсаций = 4,6 клетки?

И ещё вопрос, почему на этой осциллограмме на ножках кварца не синусоида а непонятно что? Или это мой осциллограф её так искажает? Хотя быть такого не может, у него полоса пропускания до 10МГц, а импульсы на осциллограмме под 5 МГц. download/file.php?id=522&mode=view

Re: Определение частоты по осциллограмме

Сообщение rhf-admin » 23 ноя 2011, 23:12

Re: Определение частоты по осциллограмме

Сообщение dionisiu » 01 апр 2015, 16:27

Дико извиняюсь за некрофильство, но другой темы по осциллографам здесь ещё не нашёл. Вопрос в следующем. Добыл я из своего хламушника осциллограф Н313, да вот родной щуп к нему утерян. Кое-как сделал некое подобие и включил прибор, щуп на палец, подстроился на частоту наведенного напряжения сети и. немного озадачился. В общем и целом, на экране — синусоида, но при рассмотрении её вблизи обнаружены отклонения от математически верной формы. Линия ступенчатая (как ступеньки на иллюстрациях к интегралам

Уважаемые радиохламеры, посмотрите, пожалуйста, на своих осциллографах форму сетевых наводок, а то я тут беспокоиться начинаю. И, нет, это не первоапрельская шутка, несмотря на дату. Простите, фото сигнала пока приложить не могу, нечем скинуть

DIS-система зажигания

Высоковольтные импульсы зажигания, генерируемые исправными DIS-катушками зажигания двух различных двигателей (работают на холостом ходу без нагрузки).

Осциллограмма

DIS-система (Double Ignition System) зажигания имеет особые катушки зажигания. Они отличаются тем, что оснащаются двумя высоковольтными выводами. Один из них подсоединяется к первому из концов вторичной обмотки, второй — ко второму концу вторичной обмотки катушки зажигания. Каждая такая катушка обслуживает два цилиндра.

В связи с описанными особенностями проверка зажигания осциллографом и съем осциллограммы напряжения высоковольтных импульсов зажигания при помощи емкостных DIS-датчиков происходит дифференциально. То есть, получается фактический съем осциллограммы выходного напряжения катушки. Если катушки исправны, то в конце горения должны наблюдаться затухающие колебания.

Для проведения диагностики DIS-системы зажигания по первичному напряжению, необходимо поочередно снять осциллограммы напряжения на первичных обмотках катушек. Описание рисунка:

Осциллограмма

Осциллограмма напряжения на вторичной цепи DIS-системы зажигания.

  1. Отражение момента начала накопления энергии в катушке зажигания. Он совпадает с моментом открытия силового транзистора.
  2. Отражение зоны перехода коммутатора в режим ограничения тока в первичной обмотке катушки зажигания на уровне 6…8 А. Современные DIS-системы имеют коммутаторы без режима ограничения тока, поэтому зона высоковольтного импульса отсутствует.
  3. Пробой искрового промежутка между электродами обслуживаемых катушкой свечей зажигания и начало горения искры. Совпадает по времени с моментом закрытия силового транзистора коммутатора.
  4. Участок горения искры.
  5. Конец горения искры и начало затухающих колебаний.

Описание рисунка:

Осциллограмма напряжения на управляющем выводе DIS катушки зажигания.

Осциллограмма

  1. Момент открытия силового транзистора коммутатора (начало накопления энергии в магнитном поле катушки зажигания).
  2. Зона перехода коммутатора в режим ограничения тока в первичной цепи по достижении тока в первичной обмотке катушки зажигания, равного 6…8 А. В современных DIS-системах зажигания, коммутаторы не имеют режима ограничения тока, и, соответственно, отсутствует зона 2 на осциллограмме первичного напряжения отсутствует.
  3. Момент закрытия силового транзистора коммутатора (во вторичной цепи при этом возникает пробой искровых промежутков между электродами обслуживаемых катушкой свечей зажигания и начало горения искры).
  4. Отражение горения искры.
  5. Отражение прекращения горения искры и начало затухающих колебаний.
Оцените статью
( Пока оценок нет )
Добавить комментарий