Расчетный ток электрической цепи: что это такое, особенности

Содержание

Метки

  • алгоритм расчет цепей при несинусоидальных периодических воздействиях
  • алгоритм расчета цепей периодического несинусоидального тока
  • баланс мощностей
  • ВАХ нелинейного элемента
  • Векторная диаграмма
  • ветви связи
  • взаимная индуктивность
  • взаимная проводимость
  • вольт-амперная характеристика нелинейного элемента
  • второй закон Кирхгофа
  • второй закон Кирхгофа для магнитных цепей
  • входная проводимость
  • гармоники напряжения
  • гармоники тока
  • Генератор напряжения
  • генератор тока
  • главные контуры
  • графический метод расчета нелинейных электрических цепей
  • динамическое сопротивление
  • дифференциальное сопротивление
  • емкость двухпроводной линии
  • емкость коаксиального кабеля
  • емкость конденсатора
  • емкость однопроводной линии
  • емкость плоского конденсатора
  • емкость цилиндрического конденсатора
  • закон Ампера
  • закон Био Савара Лапласа
  • закон Ома
  • закон полного тока
  • закон электромагнитной индукции
  • Законы Кирхгофа
  • индуктивность
  • индуктивность двухпроводной линии
  • индуктивность однопроводной линии
  • индуктивность соленоида
  • катушка со сталью
  • Конденсатор в цепи постоянного тока
  • контурные токи
  • коэффициент амплитуды
  • коэффициент гармоник
  • коэффициент искажения
  • коэффициент магнитной связи
  • коэффициент мощности трансформатора
  • коэффициент трансформации
  • коэффициент формы
  • кусочно-линейная аппроксимация
  • магнитная постоянная
  • магнитная цепь
  • магнитный поток рассеяния
  • метод активного двухполюсника
  • метод двух узлов
  • метод контурных токов
  • метод наложения
  • метод узловых напряжений
  • метод узловых потенциалов
  • метод эквивалентного генератора
  • метод эквивалентного источника ЭДС
  • Метод эквивалентных преобразований
  • методы расчета магнитных цепей
  • независимые контуры
  • нелинейный элемент
  • несинусоидальный периодический ток
  • обобщенный закон Ома
  • опорный узел
  • основной магнитный поток
  • параллельное соединение конденсаторов
  • первый закон Кирхгофа
  • первый закон Кирхгофа для магнитных цепей
  • последовательное соединение конденсаторов
  • последовательный колебательный контур
  • постоянная составляющая тока
  • потери в меди
  • потери в стали
  • приведенный трансформатор
  • Примеры расчета схем при несинусоидальных периодических воздействиях
  • принцип взаимности
  • принцип компенсации
  • расчет гармоник тока
  • расчет магнитной цепи
  • расчет нелинейных цепей постоянного тока
  • расчет цепей несинусоидального тока
  • Расчет цепи конденсаторов
  • расчет цепи с несинусоидальными периодическими источниками
  • Резонанс в электрической цепи
  • решение задач магнитные цепи
  • сила Ампера
  • сила Лоренца
  • Символический метод
  • собственная проводимость
  • статическое сопротивление
  • сферический конденсатор
  • теорема об эквивалентном источнике
  • теорема Тевенена
  • топографическая диаграмма
  • Трансформаторы
  • трехфазная система
  • удельная энергия магнитного поля
  • уравнения трансформатора
  • Цепи с конденсаторами
  • частичные токи
  • чередование фаз
  • ЭДС самоиндукции
  • эквивалентная схема трансформатора
  • электрическая постоянная
  • электроемкость
  • энергия магнитного поля

Что такое 1 Ампер в системе СИ

Сила тока в 1 Ампер была определена в системе СИ с помощью силы взаимного действия двух проводников с током.

Рассмотрим два тонких проводника (рис. 9). Каждый проводник имеет бесконечную длину. Расположим их в вакууме параллельно на расстоянии 1 метр один от другого.

Расчетный ток электрической цепи: что это такое, особенностиРис. 9. Эталон силы тока 1 ампер в системе СИ

Выделим на каждом проводнике кусочек длиной 1 метр.

Если проводники взаимодействуют с силой \(\large 2 \cdot 10^{-7} \) Ньютона, приходящейся на каждый метр их длины, то по каждому из них течет постоянный ток 1 Ампер.

Ампер – это основная единица в системе СИ. А Кулон – величина, определяемая с помощью Ампера.

Мгновенная электрическая мощность: вычисляем значение

Этот показатель устанавливает мгновенные величины измеряемых данных. Ключевое определение рассмотрено с учетом того, что единичный простой заряд (q) перемещается за определенное время Δt. На выполнение конкретного действия затрачивается энергия электрического тока PF1-F2 = U/ Δt или (U/ Δt) х q = U х (q/ Δt). Формула учитывает движение q за период Δt. Поскольку ток по классическому определению равняется заряду, переходящему из F1 в F2 (I = q/ Δt), выводится финальное выражение: PF1-F2 = U х I.

Условно допуская, что очень маленький промежуток времени, получаем мгновенную мощность для части электрической цепи P(t) = U(t) х I(t). Такие же выводы можно сделать с учетом соответствующего параметра сопротивления: P (t) = (I (t))2 х R = (U(t))2/ R.

Трехфазные электрические цепи

Расчетный ток электрической цепи: что это такое, особенности
Трехфазная цепь в рабочем режиме Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы. Второе – величина, изменяющаяся синусоидально.

Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.

Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:

  • экономичность выработки и транспортировки электроэнергии в сравнении с однофазной системой;
  • простое генерирование магнитного поля, которое необходимо для работы трехфазного асинхронного электродвигателя;
  • одна и та же генераторная установка выдает два эксплуатационных напряжения – линейное и фазное.

Трехфазная система выгодна при передаче электроэнергии на большие расстояния. К тому же материалоемкость значительно ниже, чем однофазных. Основные потребители – трансформаторы, асинхронные электродвигатели, преобразователи, индукционные печи, мощные нагревательные и силовые установки. Среди однофазных маломощных устройств можно отметить электроинструменты, лампы накаливания, бытовые приборы, блоки питания.

Треугольник мощностей

Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.

Расчетный ток электрической цепи: что это такое, особенности

где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;

Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;

S – полная мощность используется для расчета электрических цепей.

Для расчета полной мощности применяем теорему Пифагора: S2=P2+Q2. Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.

Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.

Законы Кирхгофа для расчёта электрических цепей

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим её работы.

Воспользуйтесь программой онлайн-расчёта электрических цепей.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвью электрической цепи называется такой её участок, который состоит только из последовательно включённых источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток. Узлом электрической цепи называется место (точка) соединения трёх и более ветвей. При обходе по соединённым в узлах ветвям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза .

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

∑i = 0,

или в комплексной форме

∑I = 0.

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме ЭДС:

∑Z ∙ I = ∑E.

Количество уравнений, составляемых для электрической цепи по первому закону Кирхгофа, равно Nу – 1, где Nу – число узлов. Количество уравнений, составляемой для электрической цепи по второму закону Кирхгофа, равно Nв – Nу + 1, где Nв – число ветвей. Количество составляемых уравнений по второму закону Кирхгофа легко определить по виду схемы: для этого достаточно посчитать число «окошек» схемы, но с одним уточнением: следует помнить, что контур с источником тока не рассматривается.

Популярные статьи  Наплавка покрытий

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления токов в ветвях и задать направления обхода контуров (рис. 2).

Рис. 2. Задание направления токов и направления обхода контуров для электрической цепи

Количество уравнений, составляемых по первому закону Кирхгофа, в данном случае равно 5 – 1 = 4. Количество уравнений, составляемых по второму закону Кирхгофа, равно 3, хотя «окошек» в данном случае 4. Но напомним, что «окошко», содержащее источник тока J1, не рассматривается.

Составим уравнения по первому закону Кирхгофа. Для этого «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» — со знаком «-». Отсюда для узла «1 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

I1 – I2 – I3 = 0;

для узла «2 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

—I1 – I4 + I6 = 0;

для узла «3 у.»:

I2 + I4 + I5 – I7 = 0;

для узла «4 у.»:

I3 – I5 – J1 = 0

Уравнение для узла «5 у.» можно не составлять.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура. Для контура «1 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

ZC1 ∙ I1 + R2 ∙ I2 – ZL1 ∙ I4 = E1;

для контура «2 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

-R2 ∙ I2 + R4 ∙ I3 + ZC2 ∙ I5 = E2;

для контура «3 к.»:

ZL1 ∙ I4 + (ZL2 + R1) ∙ I6 + R3 ∙ I7 = E3,

где ZC = — 1/(ωC), ZL = ωL.

Таким образом, для того, чтобы найти искомые токи, необходимо решить следующую систему уравнений:

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

>> syms R1 R2 R3 R4 Zc1 Zc2 Zl1 Zl2 J1 E1 E2 E3; >> A = ; >> b = ; >> I = A\b

В результате получим вектор-столбец I токов из семи элементов, состоящий из искомых токов, записанный в общем виде. Видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

  • Метод контурных токов для расчёта электрических цепей При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…
  • Метод фазных координат: пример расчёта матрицы передачи Расчёт матриц передачи многополюсников различной формы осуществляется достаточно просто. Матрицы передачи — это математическое описание рассматриваемой…

Часто задаваемые вопросы

  • Какой нормальный ток утечки в автомобиле?

    Утечка тока есть практически в каждом автомобиле, а норма будет зависеть от количества дополнительно установленной электроники, которая может потреблять энергию даже в режиме ожидания, а также особенности питания бортсети. Поэтому 0.05 Ампер

    – это норма для современного автомобиля. А в некоторых случаях даже 70 мА тоже допустимо.

  • Какой ток утечки через сигнализацию?

    В рабочем режиме охранное устройство потребляет до 200 мА тока зависимо от ее сложности, количества датчиков и способа подключения. Ток утечки через сигнализацию – 20-30 мА

    это нормально, главное, чтобы к такому показателю потребление уменьшалось спустя 5-10 минут после ее включения. Проблемными ее местами считают концевики дверей капота и багажника, а также модуль связи (появляются окислы на плате).

  • или0.02А если стоит 2 din. Основная проблема заключается в подключении провода питания (красного) и провода отвечающего за сохранения настроек (желтого в одну скрутку) и прямо на АКБ. Постоянное питание должен получать лишь жёлтый провод «памяти». Также ток утечки через магнитолу, как и в случае с сигнализацией, при полном выключении зажигания, должен снижаться после 10 минут покоя.

  • Как измерить ток утечки?

    Измерить ток утечки можно мультиметром либо токовыми клещами (позволяет измерять ток утечки безконтактно) поставив перед этим сигнализацию автомобиля в охрану и выждав 10-15 минут так как есть ЭБУ которые уходят в спящий режим не сразу.

    Чтобы измерить ток утечки мультиметром

    необходимо последовательно подключится в цепь питания бортсети, перед минусовой клеммой на АКБ. Сначала нужно выставить на включенном тестере режим измерения постоянного тока 10А. Затем, скинув клемму «минус» с отрицательной клеммы на аккумуляторе, подключите один его щуп на минусовую клемму автомобиля, а вторым (красным) на минусовую клемму аккумуляторной батареи. На циферблате отобразится утечка тока.

    При измерении тока утечки клещами

    на приборе нужно выставить измерение силы постоянного тока, а измеряемый проводник, может быть, как вся скрутка, идущая к минусовой клемме аккумуляторной батарее, так и от отдельных потребителей, помещается в кольцо клещей предварительно выключив зажигание полностью. На табло можно будет сразу увидеть потребление тока электроники авто в состоянии покоя.

Условные обозначения источников электрической энергии и элементов цепей

Условное обозначение Элемент
Идеальный источник ЭДС
Е — электродвижущая сила, Е = const
Ro = 0 — внутреннее сопротивление
Идеальный источник тока I = const
Rвн- внутреннее сопротивление источника тока,
Rвн>>Rнаг
Активное сопротивление
R = const
Индуктивность L = const
Емкость С = const

К химическим источникам тока относят гальванические элементы и аккумуляторы. В них заряды переносятся в результате химических реакций. При этом в гальваническом элементе реагенты расходуются необратимо, а в аккумуляторе они могут восстанавливаться путем пропускания через аккумулятор электрического тока противоположного направления от других источников.

Источники электрической энергии относятся к группе активных элементов электротехнических устройств. Если Rо=0 и электродвижущая сила (ЭДС) Е=const, то источник называется идеальным. Аккумуляторная батарея по своим параметрам близка к идеальному источнику ЭДС.

К группе пассивных элементов относятся: активное сопротивление R, индуктивность L и емкость С.

В электротехнических устройствах одновременно протекают три энергетических процесса:

1 В активном сопротивлении в соответствии с законом Джоуля — Ленца происходит преобразование электрической энергии в тепло.

Мощность, по определению равна отношению работы к промежутку времени, за который эта работа совершается. Следовательно, мощность тока для участка цепи

p = A/t = ui

Полная мощность, вырабатываемая генератором, равна

где R- полное сопротивление замкнутой цепи, называемое омическим или активным;

Р, I — мощность и ток в цепи постоянного тока.

р, i, и — мгновенные значения активной мощности, тока и напряжения в цепи переменного тока,

g — активная проводимость или величина, обратная сопротивлению g=1/R измеряется в сименсах (См).

В соответствии с законом сохранения энергии работа есть мера изменения различных видов энергии. Так, в электродвигателе за счет работы тока возникает механическая энергия, протекают химические реакции и т. д. На резисторах происходит необратимое преобразование энергии электрического тока во внутреннюю энергию проводника.

Если в проводнике под действием тока не происходит химических реакций, то температура проводника должна измениться. Изменение внутренней энергии проводника (количество теплоты) Q равно работе А, которую совершает суммарное поле при перемещении зарядов:

Q = А = uit

Воспользовавшись законом Ома, получим два эквивалентных выражения:

Это и есть закон Джоуля — Ленца.

Если нужно сравнить два резистора по характеру тепловых процессов, происходящих в них, то нужно предварительно выяснить: протекает ли по ним одинаковый ток или они находятся под одинаковым напряжением?

Если по двум резисторам протекают одинаковые токи, то согласно формуле за одно и то же время больше возрастает внутренняя энергия резистора с большим сопротивлением. С таким случаем мы встречаемся, например, в цепи с последовательным соединением резисторов. Последнее обстоятельство следует учитывать при включении в сеть нагрузки (электроплиток, утюгов, электродвигателей и т. д.). Сопротивление подводящих проводов при этом должно быть значительно меньше, чем сопротивление нагрузки. При несоблюдении этого условия в проводах выделится большое количество теплоты, что может привести к их загоранию.

Популярные статьи  Какой поставить стабилизатор напряжения, если в квартире слабое напряжение сети?

Если же оба резистора находятся под одинаковым напряжением, то согласно формуле быстрее будет нагреваться резистор с меньшим сопротивлением. Такой эффект, в частности, наблюдают при параллельном соединении резисторов.

Термин «сопротивление» применяется для условного обозначения элемента электрической цепи и для количественной оценки величины R.

Сопротивление измеряется в омах (Ом). 1 Ом — это сопротивление проводника, сила тока в котором равна 1 А, если на концах его поддерживается разность потенциалов 1 В:

1 Ом = 1 В/1 А

Электрическое сопротивление R материалов с изменением температуры меняется. Сопротивление металлических проводников линейно возрастает с температурой. У полупроводников и электролитов с увеличением температуры удельное сопротивление уменьшается, причем нелинейно.

Для сравнения проводников по степени зависимости их сопротивления от температуры t вводится величина a, называемая температурным коэффициентом сопротивления. Отсюда

Для практических расчетов в электрических цепях величину R можно принимать постоянной. В этом случае зависимость напряжения на сопротивлении R от силы тока (вольт-амперная характеристика) будет называться линейной. Электрические цепи, в которые включены постоянные по величине сопротивления, также будут линейными.

Как найти активную, реактивную и полную мощность

Активная мощность относится к энергии, которая необратимо расходуется источником за единицу времени для выполнения потребителем какой-либо полезной работы. В процессе потребления, как уже было отмечено, она преобразуется в другие виды энергии.

В цепи переменного тока значение активной мощности определяется, как средний показатель мгновенной мощности за установленный период времени. Следовательно, среднее значение за этот период будет зависеть от угла сдвига фаз между током и напряжением и не будет равной нулю, при условии присутствия на данном участке цепи активного сопротивления. Последний фактор и определяет название активной мощности. Именно через активное сопротивление электроэнергия необратимо преобразуется в другие виды энергии.

При выполнении расчетов электрических цепей широко используется понятие реактивной мощности. С ее участием происходят такие процессы, как обмен энергией между источниками и реактивными элементами цепи. Данный параметр численно будет равен амплитуде, которой обладает переменная составляющая мгновенной мощности цепи.

Существует определенная зависимость реактивной мощности от знака угла ф, отображенного на рисунке. В связи с этим, она будет иметь положительное или отрицательное значение. В отличие от активной мощности, измеряемой в ваттах, реактивная мощность измеряется в вар – вольт-амперах реактивных. Итоговое значение реактивной мощности в разветвленных электрических цепях представляет собой алгебраическую сумму таких же мощностей у каждого элемента цепи с учетом их индивидуальных характеристик.

Основной составляющей полной мощности является максимально возможная активная мощность при заранее известных токе и напряжении. При этом, cosф равен 1, когда отсутствует сдвиг фаз между током и напряжением. В состав полной мощности входит и реактивная составляющая, что хорошо видно из формулы, представленной выше. Единицей измерения данного параметра служит вольт-ампер (ВА).

Пусть приемник электро­энергии присоединен к источнику синусоидального напряжения u(t) = Usin(ωt) и потребляет синусоидальный ток i(t) = I sin (ωt -φ), сдви­нутый по фазе относительно напряжения на угол φ. U и I – действующие значения. Значение мгновенной мощности на зажимах приемника определяется выражением

p(t) = u(t) ?i(t) = 2UI sin(ωt) sin (ωt -φ) = UI cos φ — UI cos (2ωt -φ) (5.1)

и является суммой двух величин, одна из которых постоянна во времени, а другая пульсирует с двойной частотой.

Среднее значение p(t) за период Т называется активной мощностью и полностью определяется первым слагаемым уравнения (5.1):

Активная мощность ха­рактеризует энергию, расходуемую необратимо источником в единицу времени на производство полезной работы потребителем. Активная энергия, потребляемая электроприёмниками, преобразуется в другие виды энергии: механическую, тепловую, энергию сжатого воздуха и газа и т. п.

Классификация цепей

Электроцепи классифицируют по типу сложности: простые (неразветвленные) и сложные (разветвленные). Есть разделение на цепи постоянного тока и переменного, а также синусоидального и несинусоидального. Исходя из характера элементов, они бывают линейные и нелинейные. Линии переменного тока могут быть однофазными и трехфазными.

Разветвленные и неразветвленные

Во всех элементах неразветвленной цепи течет один и тот же ток. Простейшая разветвленная линия включает в себя три ветви и два узла. В каждой ветви течет свой ток. Ветвь определяют как участок цепи, который образован последовательно соединенными элементами, заключенными между двух узлов. Узел – это точка, в которой сходятся три ветви.

Линейные и нелинейные

Электрическая цепь, в которой потребители не зависят от значения напряжения и направления токов, а все компоненты линейные, называется линейной. К элементам такой цепи относятся зависимые и независимые источники токов и напряжений. В линейной сопротивление элемента не зависит от тока, например, электропечь.

В нелинейной, пассивные элементы зависят от значений направления токов и напряжения, имеют хотя бы один нелинейный элемент. Например, сопротивление лампы накаливания зависит от скачков напряжения и силы тока.

Расчетное значение — ток

Расчетные значения токов и напряжений изображают в виде векторов на комплексной плоскости. Расчетное значение тока , протекающего при несинхронном включении по генераторам и трансформаторам, определенное по формуле ( 1 — 12), несколько превышает действительную величину, так как в расчете не учтено влияние нагрузки, подключенной параллельно генераторам. Электродвигатели, составляющие обычно значительную часть нагрузки, за счет накопленной, энергии, представляют как бы дополнительную генерирующую мощность, и в момент несинхронного включения через них проходит часть тока.

Расчетные значения токов д напряжений изображают в виде векторов на комплексной плоскости.

Расчетные значения тока и частоты вращения можно получить графически, проведя касательную из начала координат к кривой тока. По точке касания определяют расчетные значения / р и пр.

Расчетные значения тока и постоянной времени цени должны быть определены без учета сопротивления выключателя и сопротивления дуги в месте КЗ. Номинальные значения постоянной времени указываются в информационных материалах заводов-изготовителей.

Расчетные значения токов замыкания на землю должны быть определены для той из возможных в эксплуатации схемы сети, при которой токи замыкания на землю имеют наибольшее значение.

Расчетное значение тока покоя коллектора / Ок применяемого транзистора должно обеспечить с достаточным запасом как по линейным искажениям, так и с точки зрения изменения положения точки покоя при колебаниях температуры окружающей среды и замене транзистора, максимальную расчетную амплитуду переменной составляющей входного тока транзистора следующего каскада / вхтсл.

За расчетное значение тока срабатывания защиты 1С з расч принимается большее из двух полученных.

По расчетному значению тока в соответствии с табл. 4.4 может быть выбран трехжильный медный кабель 3 х 70 мм2, допускающий при прокладке в траншее ( земле) ток, равный 285 А.

Надежность срабатывания автоматического выключателя проверяется по расчетному значению тока короткого замыкания в конце защищаемого участка.

Таким образом, размеры электродвигателя определяются расчетными значениями тока и магнитного потока. Эти же значения определяют величину момента всякой электрической машины.

Подзарядное устройство ( ПЗУ) выбирают по расчетным значениям тока и напряжения в нормальном режиме.

Для определения параметров элементов систем электроснабжения необходимо знать расчетные значения токов и мощностей.

Источник

Кривые напряжения и тока в активном сопротивлении

Величину переменного напряжения или тока можно оценить значением амплитуды или средним значением за полупериод или действующим значением. При изменении напряжения или тока по закону синуса среднее значение напряжения определяется:

При большой частоте вращения ротора генератора, т. е. при большой частоте колебаний э. д. с. и силы тока, измерять их амплитуды на практике крайне неудобно. По этой причине ввели величины, названные действующими значениями э. д. с, силы тока и напряжения.

Действующим значением силы переменного тока называют силу такого постоянного тока, при прохождении которого по той же цепи и за то же время выделяется такое же количество теплоты, как и при прохождении переменного тока.

откуда

При синусоидальном законе действующие значения тока и напряжения:

Приборы электромагнитной системы, применяемые для измерений напряжений и токов на переменном токе, регистрируют действующие значения. Соответственно градуируются и шкалы этих приборов.

Ток, протекающий через индуктивность L (рис. 7), меняется по закону синуса /’ = Im sin(co/ + у;).

Кривые напряжения и тока в емкостном сопротивлении

В идеальной емкости ток опережает напряжение на 90°

Режим — состояние электрической цепи переменного тока описывается дифференциальными уравнениями, представляющими собой уравнения с постоянными коэффициентами и правой частью, например:

Из курса высшей математики известно, что общее решение такого уравнения может быть найдено методом наложения принужденного и свободного режимов:

где

— ток принужденного режима при di/dt=0

— ток свободного режима.

Свободные процессы исследуются с целью определения устойчивости системы. В устойчивой системе процессы должны затухать. Принужденный и свободный режимы в сумме определяют процессы, которые называются переходными, т.е. осуществляется переход от одного установившегося режима к другому.

При установившемся режиме ток и напряжение сохраняют в течение длительного времени амплитудные значения.

В цепях постоянного тока токи и напряжения остаются неизменными, а в цепях переменного тока остаются неизменными кривые изменения токов и напряжений.

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

U = 24 В.

Требуется рассчитать токи на всех резистивных элементах.

Исходная цепь

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте. Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения

Делают расчёты для каждого такого звена, после – всей цепи целиком

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Последовательно соединённые резисторы R2 и R3

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Смешанное включение на участке CD

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Результат первого свёртывания

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Результат последующего свёртывания

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезках AB и CD

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока.

Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность. где P – мощность, измеряется в ваттах и обозначаетсяВт ;U – напряжение, измеряется в вольтах и обозначается буквойВ ;I – сила ток, измеряется в амперах и обозначается буквойА .

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

Онлайн калькулятор для определения потребляемой мощности
Напряжение, В:
Сила тока, А:

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала.

Онлайн калькулятор для определения силы тока в зависимости от потребляемой мощности
Потребляемая мощность, Вт:
Напряжение питания, В:

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Оцените статью
( Пока оценок нет )
Добавить комментарий