История создания
В 60 годах 20 века для управления телефонными станциями, промышленным оборудованием использовались сложные схемы с реле. Они не отличались повышенной надежностью или ремонтопригодностью. Инженерам одной из компаний, американской General Motors, была поставлена цель по созданию нового оборудования. Задачи, на которые оно было рассчитано, выглядели так:
- Упрощение отладки, замены.
- Относительная дешевизна.
- Гибкость, удобство модернизации.
- Снижение риска отказов.
Терминология, объясняющая, что такое ПЛК (PLC), внесена в международные и европейские стандарты качества МЭК, EN.
Применение контроллеров
Современный ПЛК, недорогой и надежный, находит применение в ПИД-регуляторах, счетчиках типа «Меркурий», промышленных устройствах серии DVP. Компактность блоков позволяет встраивать их в бытовую технику, монтировать в щитах и шкафах совместно с прочим электрооборудованием.
Энкодер, подключенный к контроллеру, применяется в автомобилестроении, реагируя на изменение угла поворота руля. Удобно использовать ПЛК при создании комплексов с ЧПУ, автоматизированных систем запуска аварийной откачки сточных вод в канализации. Видеонаблюдение, интегрированное в охранный пост, создаст полноценный обзор зоны наблюдения для оператора.
Все требуемые данные при этом будут сохранены на носителе информации (переданы в сеть), а в случае опасности сигнал тревоги будет подан автоматически. Цепочке контроллеров под силу управлять работой цеха металлообработки, пошивочной мастерской. В домашнем варианте ПЛК без участия человека включит свет, накачает воду из колодца в бак до требуемого уровня.
Особенности работы и программирования ПЛК
Теперь, когда стали более понятными основные возможности ПЛК, следует выяснить способы их применения.
Система программирования является одной из примечательных и полезных особенностей ПЛК, она обеспечивает упрощенный подход к разработке управляющих программ для специалистов различного профиля.
Именно в ПЛК впервые появилась удобная возможность программирования контроллеров путем составления на экране компьютера визуальных цепей из релейных контактов для описания операторов программы (рисунок 6). Таким образом, даже весьма далекие от программирования инженеры-технологи быстро осваивают новую для себя профессию. Подобное программирование называют языком релейной логики или Ladder Diagram (LD или LAD). Задачи, решаемые при этом ПЛК, значительно расширяются за счет применения в программе функций счетчиков, таймеров и других логических блоков.
Рис. 6. Пример программной реализации электрической цепи
Задача программирования ПЛК еще более упрощается благодаря наличию пяти языков, стандартизованных для всех платформ ПЛК. Три графических и два текстовых языка программирования взаимно совместимы. При этом одна часть программы может создаваться на одном языке, а другая — на другом, более удобном для нее.
К графическим средствам программирования ПЛК относятся язык последовательных функциональных блоков (Sequential Function Chart, SFC) и язык функциональных блоковых диаграмм (Function Block Diagram, FBD), более понятные для технологов. Для программистов более привычными являются язык структурированного текста (Statement List, STL), напоминающий Паскаль, и язык инструкций (Instruction List, IL), похожий на типичный Ассемблер.
Конечно, простота программирования ПЛК является относительной. Если с программированием небольшого устройства может после обучения справиться практически любой инженер, знакомый с элементарной логикой, то создание сложных программ потребует знания основ профессии программиста и специальных познаний в программировании ПЛК.
Упростить создание программного обеспечения для современных ПЛК позволяют специальные комплексы, такие как
(рисунок 7), ISaGRAF, OpenPCS и другие инструменты, не привязанные к какой-либо аппаратной платформе ПЛК и содержащие все необходимое для автоматизации труда программиста. Для отладки сложных проектов на основе компонентов TI компания предлагает специальные отладочные комплекты и необходимое программное обеспечение.
Рис. 7. Рабочий экран программирования в среде CoDeSys
Перед началом работы ПЛК выполняет первичное тестирование оборудования и загрузку в ОЗУ и ПЗУ операционной системы и рабочей программы пользователя. Стандартный ПЛК кроме рабочего режима имеет режим отладки с пошаговым выполнением программы, с возможностью просмотра и редактирования значений переменных.
Рабочий режим ПЛК состоит из повторяющихся однотипных циклов, каждый из них включает три этапа:
- опрос всех датчиков с регистрацией их состояния в оперативной памяти;
- последовательный анализ рабочей программы с использованием данных о текущем состоянии датчиков и с формированием управляющих воздействий, которые записываются в буферные регистры;
- одновременное обновление контроллером состояния всех своих выходов и начало очередного этапа опроса датчиков.
Процесс исполнения программы ПЛК можно контролировать на экране подключенного компьютера с отображением состояния отдельных параметров. Например, процедуры включения и выключения насоса могут меняться в зависимости от требуемой задержки, значение которой задается специальной переменной.
При необходимости можно остановить выполнение программы и перевести ПЛК в режим программирования, затем на экране компьютера изменить ход выполнения программы или отдельные параметры и снова записать их в память ПЛК.
Принцип работы ПЛК
По сути, микроконтроллер достаточно близок к реле. Только вместо механических контактов и катушек в нем — электронные цепи. Понять принцип действия будет легко любому инженеру, знакомому со схемами, основами электротехники.
Датчик освещенности на входе подает сигнал в блок обработки данных. В нормальном состоянии процессор не реагирует. Как только сенсор определит падение освещения, изменится его сопротивление, центральный блок задействует цепи питания электроламп.
Для управления ПЛК, его программирования используется бытовой ПК. Несколько отдельных микроконтроллеров образуют каскад с усложненными задачами. Системы «умный дом», автоматика включения двигателя насоса для закачки воды в накопительный бак давно содержат в себе подобные блоки.
Сложные микроконтроллерные устройства обеспечивают охрану, защиту периметра (квартиры), включая связь с полицией (владельцем) через модем, подъем тревоги при проникновении нарушителей, разрушении механизма закрытия двери.
Первый этап работы устройства состоит из экспресс-теста задействованного оборудования. Одновременно идет загрузка операционной среды, управляющих программ. Все как в настольном ПК при старте Windows. Предусмотрена пошаговая отработка команд (отладка), при которой допускается мониторинг, корректировка переменных.
Для простоты восприятия рабочий, шаговый режим ПЛК разбит на типовые циклы. Они повторяются во время функционирования устройства. В каждом цикле, «маршрутной карте» заключаются 3 действия:
Завершается цикл быстрым переходом к первому этапу «урока».
Основы программирования ПЛК. Реле и контроллер
Логика загружается в ПЛК при помощи программного обеспечения. Это ПО определяет, какие из выходов будут под напряжением и какие входные условия нужны для любых изменений. Управляющая программа аналогична схеме работы физического реле, но физически нет ни реле, ни проводов, ни катушек. Все эти элементы – мнимые. ПО разрабатывается и просматривается на ПК, соединенном с интерфейсом контроллера.
Есть кнопка, контроллер и индикатор. Когда кнопка не задействована, сигнал на вход контроллера отправлен не будет. ПО, показывающее открытый вход, не отправит сигнал на выход. Так, на выходе ток отсутствует и лампа не будет гореть.
Если кнопку нажать, то на входной канал отправиться соответствующий сигнал. Контакты переведутся в активное состояние, как физическое реле. В данном случае контакт контроллера, открытый ранее, закроется и программа отправит сигнал на выход. Когда выходной контакт будет под напряжением, то индикатор загорится.
Контакты с индикатором соединены физическим способом. А сигнал виртуальный. Однако, все элементы существуют только в компьютерном ПО, а как физические – нет. Но принцип реле здесь используется. Также в программе можно задавать условия, которые будут проверятся и выполнятся контроллером.
Чтобы создать такую же схему, но на основе физических железных компонентов, понадобится три реле, где два открытых контакта – каждый из них будет использоваться. Но с помощью ПЛК можно не добавляя лишнего оборудования использовать столько контактов на каждый вход, сколько захочется.
Управляющие команды на языке релейной логики просты и понятны для инженеров-электриков. На графическом интерфейсе видны все логические операции. Это электрическая ц3епь с замкнутыми либо разомкнутыми контактами. Если по цепи протекает ток, что это истина. Если ток не протекает, тогда состояние – ложь.
Основой управляющей программы служат логические выражения, состоящие из операндов и переменных. Также программа состоит из операторов. Операторы – это команды языка программирования.
Инженер-программист ПЛК – это сегодня больше инженер, чем программист. Сейчас не нужны сложные языки, писать ассемблерные вставки. Достаточно использовать стандартные функциональные блоки.
Принцип работы ПЛК
ПЛК предназначены для автоматического управления дискретными и непрерывными технологическими процессами.
Основные принципы работы ПЛК:
- Цикличность
- Работа в реальном масштабе времени, обработка прерываний
Цикличность работы ПЛК
В одном цикле ПЛК последовательно выполняет следующие задачи:
- Самодиагностика
- Опрос датчиков, сбор данных о текущем состоянии технологического процесса
- Обмен данными с другими ПЛК, промышленными компьютерами и системами человеко-машинного интерфейса (HMI)
- Обработка полученных данных по заданной программе
- Формирование сигналов управления исполнительными устройствами
Время цикла
Время выполнения одного цикла программы зависит от:
- размера программы
- количества удалённых входов-выходов
- скорости обмена данными с распределённой периферией
- быстродействия ЦПУ
Время цикла (время квантования) должно быть настолько маленьким, чтобы ПЛК успевал за скоростью изменения переменных процесса (см. теорию автоматического управления),
в противном случае процесс станет неуправляемым.
Watchdog
Строжевой таймер следит за тем, чтобы время цикла не превышало заданное.
Обработка прерываний
По прерываниям ПЛК запускает специальные программы обработки прерываний.
Типы прерываний:
- Циклические прерывания по времени (например, каждые 5 секунд)
- Прерывание по дискретному входу (например, по сработке концевика)
- Прерывания по программным и коммуникационным ошибкам, превышению времени цикла, неисправностям модулей, обрывам контуров
Модули ПЛК
- Корзина для установки модулей
- Стабилизированный блок питания AC/DC (~220В/=24В)
- Центральное процессорное устройство (ЦПУ) с интерфейсом для подключения программатора,
переключателем режимов работы, индикацией статуса, оперативной (рабочей) памятью, постоянной памятью для хранения программ и блоков данных - Интерфейсные модули для подключения корзин расширения локального ввода-вывода и распределённой периферии
- Коммуникационные модули для обмена данными с другими контроллерами и промышленными компьютерами
- Модули ввода-вывода
- Прикладные модули (синхронизация, позиционирование, взвешивание и т.п.)
Функции устройств ввода
- Электрическое подключение и питание технологических датчиков (дискретных и аналоговых)
- Диагностика состояния (обрыв провода, контроль граничных значений, короткое замыкание и т.п.)
- Формирование цифровых значений (машинных слов) технологических параметров
- Передача этих данных в память ПЛК для дальнейшей обработки
Функции устройств вывода
- Электрическое подключение исполнительных устройств
- Диагностика состояния (обрыв провода, контроль граничных значений, короткое замыкание и т.п.)
- Приём управляющих машинных слов из памяти ПЛК
- Формирование управляющих сигналов (дискретных и аналоговых)
Типы устройств ввода-вывода
- Модули локального ввода-вывода располагаются:
- в одной корзине с ЦПУ
- в соседних корзинах в одном шкафу с ЦПУ
- в корзинах в соседних шкафах в одном помещении с ЦПУ
- Модули распределённого ввода-вывода (децентрализованная периферия) располагаются удалённо (в другом здании или в поле по по месту управления)
и связываются с ЦПУ по промышленной полевой шине. Станции удалённого ввода-вывода могут иметь взрывозащищённое исполнение или повышенный
класс защиты корпуса (например, IP67) и устанавливаться без шкафа
Функции коммуникационных модулей
Коммуникационные модули предназначены для обмена данными:
- с удалёнными модулями ввода-вывода (Profibus, Modbus и др.)
- с программаторами, панелями оператора (HMI) и другими контроллерами
- с полевыми устройствами (HART, Foundation Fieldbus и др.)
- с сервоприводами (SERCOS)
- с промышленными компьютерами верхнего уровня (Industrial Ethernet и др.)
- по радиоканалам (GSM, GPRS)
- по телефонным линиям
- по Internet (встроенные web-серверы публикуют на своих страницах статусную информацию)
Типы ПЛК
Все ПЛК, выпускаемые Schneider Electric, Mitsubishi, Beckhoff, Omron, Segnetics или Unitronics, четко разделяются по типам. Это же относится к классификации российской продукции, представленной компаниями «Овен», «Контар», «Текон» и другими. Конструктивно устройства принято обозначать как моноблочные и модульные.
В первом типе содержится полный набор входных, выходных цепей, процессор, источник энергии. Во втором предусмотрена сборка готового ПЛК из отдельных частей. Согласно МЭК 61131, количество и состав модулей варьируются в соответствии с назначением, характеристиками поставляемого заказчику устройства.
Модульный микроконтроллер может управлять посредством Ethernet соединения малопроизводительным собратом, выполняющим специфично назначенные функции (диагностика состояния периметра, безопасность охраняемой зоны). Маломощный адаптер питания в этом случае является отдельным модулем. Обобщенно функциональные возможности второго вида превосходят первый. Но в отдельных ситуациях (микроконтроллер управления чайником Berghof) достаточно моноблочного ПЛК.
Главное достоинство такой конструкции — компактность. При этом полностью завершенная конструкция платы, блока контроллера оборудуется дисплеем и устройством ввода-вывода, кнопочной панелью. Типичный пример — «умный» автоматный моноблок, отвечающий за стабилизацию напряжения.
Из нескольких ПЛК, смонтированных на стандартную рейку, набирается укрупненный узел управления. Первоначально конфигурация микроконтроллеров подразумевала замену существовавших релейных, полупроводниковых схем. Со временем задачи усложнились, но и сохранившиеся ограниченно производительные 8 и 16 разрядные процессоры по-прежнему востребованы в промышленности.
Преимущества ПЛК
Многие предприятия, находящиеся в развитых странах дают возможность освободить человека от выполнения сложных и рутинных процессов. Благодаря такому решению увеличивается скорость работы, и снижается шанс образования дефектных изделий. Кроме того, оборудование не нуждается в перерывах на обед и может работать без остановки неделями. Каждая операция выполняется в точности с технологическим процессом, что позволяет избежать непредвиденных обстоятельств. Это только часть преимуществ ПЛК, также оборудование способно:
- Вести контроль или управлять отдельными электрическими установками. Все ограничивается только количеством входов и выходов. Так оператор, может создать условия, при которых автоматизируется сразу несколько технических станков или роботов.
- Высокая точность обработки информации и следование одному алгоритму.
- Работает при любых условиях и не требует перерывов. Благодаря этому людям больше не приходится работать в опасных для здоровья сферах, что дает возможность снизить риск образования раковых заболеваний и предотвращает получение травм.
- Для настройки используется легкий язык программирования, поэтому процесс не занимает много времени.
Выбор ПЛК
Выбор платформы автоматизации
Выбор платформы определяет и весь ваш будущий выбор.
ПЛК является первым пунктом в выборе платформы.
Правильный выбор платформы позволяет минимизировать расходы жизненного цикла системы управления:
- склад запасных частей и сервисное обслуживание
- обучение и сертификацию обслуживающего персонала
- приобретение лицензий на средства разработки прикладного ПО
- интеграцию (бесшовная интеграция)
- миграцию (переход со старого оборудования на новое)
- программы и сикдки для ключевых клиентов
Определение количества точек ввода-вывода
Желательно максимально точно определить общее количество точек ввода-вывода (с учётом резервирования), чтобы подобрать ПЛК соответствующей производительности,
или заранее предусмотреть модель контроллера с большим запасом по расширяемости.
- Дискретные входы (стандартные и быстродействующие импульсные)
- Аналоговые входы для подключения датчиков:
- токовых (0..20мА, 4..20мА)
- «напряженческих» (-10..+10В, 0..+10В)
- термопар и термосопротивлений (способ подключения: 2-х, 3-х или 4-х проводное подключение)
- Дискретные выходы (мокрый контакт)
- Релейные выходы (сухой контакт):
- тип нагрузки (резистивная, индуктивная, резистивно-индуктивная)
- величина тока (в Амперах)
- напряжение (~220В, =24В)
- Аналоговые выходы:
- токовые (0..20мА, 4..20мА)
- «напряженческие» (-10..+10В, 0..+10В)
- Интерфейсы для подключения угловых или линейных датчиков скорости, положения (энкодеров, резольверов, синусно-косинусных)
Определение архитектуры системы управления
- Составить список объектов автоматизации (производственных площадок, цехов, участков, технологических линий, подсистем)
- Определиться с количеством ПЛК: если объекты управляются независимо друг от друга и вводятся в эскплуатацию поочередно, то можно предусмотреть для них
отдельные контроллеры - В зависимости от объёма и скорости обмена данными, территориального расположения объектов управления необходимо выбрать тип и топологию промышленной сети,
требуемое коммуникационное оборудование - Для минимизации длины кабельных соединений используются станции распределённого ввода-вывода
- Расписать точки ввода вывода по контроллерам, шкафам локального и децентрализованного ввода-вывода, определить количество и типы модулей ввода-вывода с
учётом запаса по свободным каналам ввода-вывода - В зависимости от направления обмена данными между ПЛК необходимо правильно выбрать конфигурацию Master – Slave (Ведущий – Ведомый): контроллеры типа Slave
не могут обмениваться данными друг с другом
Масштабируемость
Масштабируемость – это возможность подобрать промышленный контроллер оптимальной конфигурации под конкретную задачу (не переплачивая за избыточную функциональность),
а при необходимости расширения – просто добавить недостающие модули без замены старых.
Выбор блоков питания
Контроллеры подключаются к стабилизированным импульсным источникам питания. Необходимо аккуратно подсчитать суммарный ток, потребляемый всеми модулями
контроллера и подобрать блок питания с соответствующей нагрузочной способностью.
Пример последствий неправильного выбора блока питания
Выходные модули установки приготовления клея для варки целлюлозы иногда отключались и испорченный клей приходилось выбрасывать тоннами.
К финскому проекту ни у кого претензий не возникало. Заменили все модули ввода-вывода — не помогло. Грешили на случайные помехи из-за плохого заземления.
Оказалось, что в определённых ситуациях (как-бы случайно) срабатывало такое «большое» количество входов и выходов,
что суммарный потребляемый ими ток на мгновение превышал допустимый выходной ток блока питания и модули вывода отключались.
Заменили блок питания на более мощный и проблема была решена.
- Очень полезен программный симулятор, с помощью которого можно отладить программу без подключения к ПЛК
- Удобно, если для программирования ПЛК можно использовать стандартный ноутбук и стандартный кабель (USB или Ethernet)
- Проще найти программиста, если контроллер поддерживает стандартные языки программирования IEC61131:
- LD (Ladder Diagram) – графический язык релейной логики
- IL (Instruction List) – список инструкций
- FBD (Function Block Diagram) – графический язык диаграмм логических блоков
- SFC (Sequential Function Chart) – графический язык диаграмм состояний
- ST (Structured Text) – текстовый язык программирования высокого уровня
Место ПЛК в системе управления
До создания миниатюрных интегральных схем рука оператора буквально не успевала переключать режимы на пульте цепи управления. Использование контроллерных блоков «Сегнетикс», «Дельта» и подобных способствовало снятию нагрузки с человека.
Ее переложили «на плечи» машин с выводом на экран данных мониторинга, отображенных в виде мнемосхем и изменяемых параметров. На ПЛК возлагаются задачи по опросу датчиков и регистров, обработке поступающей информации.
Без микроконтроллеров не было бы РСУ, АСУ, сложных автоматных комплексов управления технологическими процессорами. Используя сетевой трафик, ПЛК анализируют данные, успевая проверять состояние портов входа. Главный недостаток, особенность микроконтроллеров состоит в необходимости прошивки, создания программы для работы.
Впрочем, его следует воспринимать двояко: индивидуально создаваемое ПО позволяет проектировать узкоспециализированные изделия под конкретные задачи.
Продукты
Используя предоставленный список, участники проведенного Control Engineering опроса, назвали следующих производителей ведущими поставщиками ПЛК. Продукция этих компаний представлена ниже. Дополнительные данные обзора, включающие вопросы пользователей, стенограмму комментариев и информацию еще о 25 компаниях-производителях ПЛК представлены в отчете, доступном на Control Engineering Resource Center. Найдите «PLCs» на сайте www.controleng.com, с последними новостями и продуктами.
Больше продуктов и производителей
Следующие поставщики также представлены в исследовании рынка продукции. Найдите «PLC» на сайте www.controleng.com, с отчетом об исследовании в Resource Center, и дополнительные описаниях продуктов в разделах Archive и New Products.
- ABB (Bristol Babcock)
- Advanced Micro Controls
- B&R Industrial Automation
- Baldor Electric
- Beckhoff Automation
- BoschRexroth
- Control Technology Corp.
- Eaton (Cutler-Hammer)
- Emerson Process Management
- Fuji Electric
- Hitachi
- IDEC
- Keyence
- Mitsubishi Electronics
- Moeller Electric
- National Instruments
- Omega Engineering
- Omron Electronics
- Opto 22
- Panasonic Electric Works
- Phoenix Contact (Entivity)
- Toshiba
- Wago
- Yaskawa Electric
- Yokogawa
Программирование без программиста
Одной из базовых идей, лежащих в основе использования ПЛК, является упрощение системы программирования и повышение наглядности языковых средств до уровня, доступного для понимания техническому специалисту хорошо знающему и непосредственно эксплуатирующему оборудование, но не обладающему специальными знаниями в области разработки программного обеспечения.
Такой специалист, получив простой и понятный инструмент выражения своих знаний об алгоритмах управления процессами, находящимися в его ведении, во многих случаях будет способен самостоятельно реализовать и отладить программу ПЛК, а при необходимости перенастроить параметры работы оборудования и своевременно изменить программу управления.
Зачастую качество программы ПЛК созданной таким специалистом оказывается выше, чем программы, написанной по его заданию профессиональным программистом не знакомым со всеми особенностями работы автоматизируемого процесса.
Рейтинг ПЛК среднего ценового сегмента
Segnetics Trim5
Качественный прибор, который по техническим характеристикам опережает многие модели в среднем ценовом сегменте. Продукт разработан российскими инженерами, поэтому учтены все нюансы, с которыми часто сталкивались операторы при настройке.
Корпус выполнен из прочного материала, который не стирается и не деформируется из-за механических нагрузок. Для управления используется сенсорный дисплей, который поддерживает multi-touch. Объем встроенного накопителя – 2 Гб, что дает возможность хранить большую часть информации.
Скорость записи составляет 2000 IOPS, при произвольном доступе, при этом скорость чтения – 5000 IOPS. Рабочая температура 0…50 градусов. Поддерживаются интерфейсы Ethernet, RS485, USB, Wi-Fi.
программируемый логический контроллер Segnetics Trim5
Достоинства:
- Универсальное использование;
- Простое применение;
- Эффективность;
- Не требует обслуживания;
- Долговечность;
- Поддерживает современные интерфейсы;
- Входное напряжение до 230 В.
Недостатки:
ОВЕН ПЛК 100 24.Р-L
Модель предназначена для установки в различных сферах, в том числе ЖКХ или производственных линиях. Количество дискретных входов составляет 8 штук, что дает возможность подключить несколько исполнительных объектов. Присутствует индивидуальная гальваническая развязка входов. Корпус изготавливается из негорючего пластика. Степень защиты – IP20. Поэтому использовать продукт в местах с повышенной влажностью запрещено, иначе есть вероятность короткого замыкания
программируемый логический контроллер ОВЕН ПЛК 100 24.Р-L
Достоинства:
- Эффективность;
- Универсальность;
- Прочный корпус;
- Долговечность;
- Надежность;
- Простота программирования.
Недостатки:
Болид М3000-Т Инсат
Изделие отлично подойдет для создания автоматизированной системы управления технологических устройств, которое используется в различных областях. Программирование осуществляется благодаря собственному ПО. Продукт можно эксплуатировать при различных температурах. Питание осуществляется от сети. Функционирует на операционной системе Linux. Средний срок службы составляет 12 лет. Корпус изготавливается из пластика. Масса прибора – 500 грамм.
программируемый логический контроллер Болид М3000-Т Инсат
Достоинства:
- Долговечность;
- Высокий срок службы;
- Процессор ARM Cortex-A9;
- Цена;
- Прочность;
- Оперативная память – 512 мб.
Недостатки:
Ограничения ПЛК
Не стоит полагать, что наличие программируемого контроллера способно решить все глобальные проблемы пользователя. ПЛК, работающие на основе протоколов Codesys, Modbus (для модульных решений), обладают ограниченной сферой применения. Их выбор обусловлен поставленной задачей. Попытку создать универсальные ПЛК вряд ли можно признать целесообразной.
Подобный ход лишает технологический процесс гибкости. Создание требуемой конфигурации осуществляется комплектацией готового моноконтроллера, согласно проекту заказчика. В исключительных ситуациях проблему решают сборкой мегаустройства из дискретных блоков. Последний вариант предпочтительнее: каждый элемент допускается оборудовать индивидуальным пультом ввода команд, сенсорной панелью, устройством отображения данных.
Роль каналов обмена данными играют кабельные медные шины, оптоволоконная связь. Успешно используются варианты стандартизированных интерфейсов RS-232, RS-485 (кабель), промышленных Profibus или CAN. Не возбраняется коммутация по беспроводным линиям (Wi-Fi).
Установка к CODESYS
Для того чтобы устройство программировалось в CODESYS, в нем предварительно должна быть установлена так называемая система исполнения CODESYS Control. Она включает планировщик задач, загрузчик, функции отладки, обслуживает полевые сети, ввод/вывод и т. д. Именно благодаря ей МЭК-программа оказывается аппаратно-независимой. Набор ресурсов, которые должна обслуживать система исполнения, отличается у разных контроллеров. Речь идет не только о микроконтроллере, но и об устройстве в целом. По этой причине нельзя просто скопировать систему исполнения с одного устройства на другое. Она всегда требует некоторой индивидуальной адаптации. Все существующие встраиваемые системы с CODESYS созданы одним из трех способов:
- Бизнес-модель разработчиков CODESYS ориентирована на серийно выпускаемые изделия. Изготовитель ПЛК приобретает стартовый набор. Это комплекс из программного обеспечения и работ по обучению, помощи в адаптации и дальнейшему сопровождению. На выходе получается специальная «прошивка», «заточенная» под конкретную систему и готовая к тиражированию. Первая адаптация обычно занимает несколько месяцев. Выполнив ее, компания приобретает необходимый опыт и может самостоятельно устанавливать CODESYS на любые свои продукты достаточно быстро, даже если они построены на разных процессорах и в разных операционных системах.
- Существуют компании (Systec, Janz, Frenzel Berg и др.), предлагающие готовые встраиваемые устройства с CODESYS и системы под заказ. Заказчику остается только написать прикладное ПО. Обычно такие компании выпускают собственный ряд модулей-«полуфабрикатов». У них имеется надежное аппаратное ядро (встраиваемый компьютер, микропроцессорный модуль, PLC Сore), определенный набор плат или микросхем ввода/вывода, сетевые и другие модули. Из них компонуется нужная система. Они также предлагают несколько типов готовых встраиваемых компьютеров (контроллеров) с CODESYS и эволюционные наборы.
- Применение микросхем и модулей Beck IPC@CHIP. Это миниатюрный встраиваемый компьютер с ОС РВ на борту. Компании Beck удалось придумать технологию и создать специальный инструмент — Platform Builder (кстати, бесплатный). С его помощью в диалоговом режиме мы задаем требуемую конфигурацию системы исполнения CODESYS. Например, можно включить поддержку CANopen, веб-визуализации, описать входы/выходы, выбрать способ обслуживания энергонезависимой памяти, добавить собственные обработчики системных событий и т. п. Затем автоматически генерируются все необходимые файлы. Остается дописать по готовым шаблонам драйверы ввода/вывода под нашу периферию и собрать систему исполнения. Получается исполняемый файл, который копируется на встроенный диск IPC@CHIP. Технология выглядит простой, но пока никто из конкурентов не создал аналогов. Все они предлагают некие типовые сборки PLC Core ядер с фиксированным функционалом.
По требованию российских заказчиков Beck создала специальное исполнение чипов с расширенным температурным диапазоном (–40 °С). Существует исполнение для энергетики с поддержкой коммуникационной библиотеки МЭК 61850.
Первый путь выбирают крупные изготовители встраиваемых систем. Он оправдан при выпуске от нескольких сотен изделий в год и выше. В странах ЕС все более развивается практика заказа разработки. По числу применений в России лидирует технология Beck IPC@CHIP. В любом случае среда программирования CODESYS поставляется бесплатно. Никаких ограничений в функционале и числе установок в ней не предусмотрено. В CODESYS имеется встроенный эмулятор контроллера. Это позволяет начать работу без приобретения аппаратных средств.
Рис. «Беспилотный» транспортер E&K AUTOMATION на базе собственного встроенного контроллера и модулей ввода/вывода Wago IO
Интерфейсы цифрового типа
Вначале основным назначением компонентов управления было только лишь регулирование последовательных логических операций. Сегодня же программируемые логические устройства также выполняют обработку сигналов, применяя цифровые технологии. В их функционале реализованы функции обмена данными с другими устройствами. Совмещаются ПЛК с такими устройствами:
- преобразователями частот;
- модулями GSM;
- панелями оператора;
- серверами для сбора информации.
Пример интерфейса программного обеспечения
Структура распределенная, в зависимости от типа исполнения, то есть, модули входов и выходов размещаются на разных расстояниях от контроллера, в непосредственной близости к объекту управления.
При наличии сразу нескольких решений для регулирования работы единой системы поддерживается возможность объединения в сеть с целью оперативного обмена данными. Также это решение подходит для согласования всех управляющих действий и передачи информации в основной пункт диспетчера.
Для того, чтобы эта задача реализовывалась максимально эффективно, используют цифровые интерфейсы, а также протоколы передачи данных:
- Profibus;
- Modbus RTU;
- CANOpen и др.