Преобразователи напряжения постоянного тока

Анализ работы выходного фильтра

Для формирования синусоидального напряжения на выходе инвертора включаются фильтры нижних частот. Основные виды фильтров описаны во многих работах, в частности, в приведены восемь разновидностей схем таких фильтров. Базовым является классический Г-образный LC-фильтр (рис. 7).

Преобразователи напряжения постоянного тока

Рис. 7. Выходной Г-образный фильтр низкой частоты

Наиболее эффективным критерием оценки синусоидальности является коэффициент гармоник kГФ для напряжения, получаемого на выходе стандартного фильтра с заданным параметром, подключенного на выходе инвертора . В качестве указанного параметра удобнее принять его относительную частоту

 w* = w/w = w√LC,                (8)

где: w— собственная частота фильтра; w — рабочая частота инвертора (частота первой гармоники напряжения на выходе инвертора); L и C — индуктивность дросселя и емкость конденсатора фильтра соответственно.

Модуль коэффициента передачи фильтра по напряжению на частоте гармоники с номером n (при холостом ходе на выходе фильтра):

Преобразователи напряжения постоянного тока

С учетом последнего, для коэффициента гармоник по напряжению получим:

Преобразователи напряжения постоянного тока

При этом коэффициент передачи фильтра по напряжению первой гармоники принят равным единице, что близко к получаемым в большинстве практических случаев значениям. Построив по (10) зависимости kГФ = f(w*) для каждого исследуемого напряжения на выходе инвертора, можно объективно оценить качество напряжения. Чем ближе к оси ординат будет расположена эта зависимость, тем с меньшим значением относительной частоты w* и, следовательно, с меньшей массой и габаритными размерами потребуется фильтр для обеспечения заданного значения kГФ.

Из (10) видно, что значение w* для данного значения kГФ будет тем меньше, чем выше номер ближайшей к основной высшей гармоники (nmin), то есть качество выходного напряжения инвертора определяется не столько его коэффициентом гармоник kГФ, сколько количеством исключенных из спектра этого напряжения высших гармоник низшего порядка. Поэтому все основные методы формирования выходного напряжения в основном направлены на решение задачи исключения высших гармоник, ближайших к основной.

Фильтрующие способности фильтра, изображенного на рис. 7, можно характеризовать коэффициентом передачи напряжения гармоник :

Преобразователи напряжения постоянного тока

где Zпос — полное сопротивление последовательной ветви фильтра, Gпар — проводимость параллельной ветви фильтра с учетом нагрузки.

С учетом, что

Преобразователи напряжения постоянного тока

из (8) и (11) получим коэффициент передачи по напряжению (при нагрузке в виде, показанном на рис. 8 пунктиром):

Преобразователи напряжения постоянного тока

Рис. 8. Зависимости модуля коэффициента передачи напряжения:
а) по первой гармонике (n = 1);
б) для гармоник n = 1; n = 5; n = 7; n = 11 и n = 13

Или, если обозначить

Преобразователи напряжения постоянного тока

и учесть (8), из (13) получим коэффициент передачи напряжения по первой гармонике в следующем виде:

Преобразователи напряжения постоянного тока

где jH — угол сдвига первой гармоники тока нагрузки относительно первой гармоники напряжения на нагрузке. На рис. 8 приведены графические зависимости модуля коэффициента передачи напряжения от значения относительной частоты w* и от параметра a1.

Как видно из полученных зависимостей, при увеличении параметра a1, то есть при увеличении индуктивности фильтра, коэффициент передачи напряжения уменьшается. Это связано с увеличением падения напряжения на этой индуктивности. Также из этих зависимостей видно, что с увеличением номеров гармоник модуль коэффициента передачи напряжения резко уменьшается, что естественно, так как фильтр настроен на основной первой гармонике.

Осциллограмма постоянного напряжения

Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) – это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.

Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:

Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).

Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.

Преобразователи напряжения постоянного тока

Но как же нам из пульсирующего постоянного напряжения

получить самое что ни на есть настоящее постоянное напряжение?

Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:

В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается

Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.

Разновидности преобразователей

Преобразователи напряжения постоянного токаСреди всего многообразия существующих видов преобразователей выделяются следующие классы:

  • специальные устройства для дома;
  • высоковольтное и высокочастотное оборудование;
  • бестрансформаторные и инверторные импульсные устройства;
  • преобразователи постоянного напряжения;
  • регулируемые аппараты.

К этой же категории электронных приборов относят преобразователи тока в напряжение.

Аппаратура для дома

С этим типом преобразовательных устройств рядовой пользователь сталкивается постоянно, поскольку в большинстве моделей современной техники имеется встроенный блок питания. К тому же классу относятся бесперебойные источники питания (БИП), имеющие встроенный аккумулятор.

В отдельных случаях бытовые преобразователи выполняются по двойной кольцевой (инверторной) схеме.

За счет такого преобразования от источника постоянного тока (аккумулятора, например), удается получить на выходе переменное напряжение стандартной величины 220 Вольт. Особенностью электронных схем является возможность получения на выходе чисто синусоидального сигнала постоянной амплитуды.

Регулируемые устройства

Эти агрегаты способны значение выходного напряжения и повышать его. На практике чаще встречаются аппараты, позволяющие плавно изменять пониженное значение выходного потенциала.

Классическим является случай, когда на входе действует 220 Вольт, а на выходе получается регулируемое постоянное напряжение величиной от 2-х до 30 Вольт.

Бестрансформаторные приборы

Бестрансформаторные (инверторные) агрегаты построены по электронному принципу, предполагающему применение отдельного модуля управления. В качестве промежуточного звена в них используется преобразователь частоты, приводящий сигнал на выходе к удобному для выпрямления виду. В современных образцах инверторного оборудования нередко устанавливаются программируемые микроконтроллеры, существенно повышающие качество управление преобразованием.

Высоковольтные устройства представлены уже описанными станционными трансформаторами, повышающими и понижающими передаваемое напряжение в нужных соотношениях.

При передаче энергии по высоковольтным линиям и последующей трансформации стремятся свести ее потери в ваттах к минимуму.

К этому же классу относятся устройства, формирующие сигнал для управления лучом в телевизионной трубке (кинескопе).

Как выбрать инвертор для дома и дачи: изучаем характеристики

Самым важным показателем устройств подобного типа (разумеется, после формы выходного сигнала) является его мощность. Скажем просто – если вы приобретете инвертор мощностью в 500Вт, то запитать через него тот же электрочайник, который потребляет от 2кВт и выше, не получится. Как минимум сработает защита, и прибор отключится. Как максимум он сгорит, и именно по этой причине устройства подобного типа снабжают массой всевозможных защит, о которых мы поговорим позже, а пока вернемся к нашей мощности.

Популярные статьи  Почему мигает лампочка сетевого фильтра к которому подключен холодильник?

На сегодняшний день ее почему-то стали обозначать не стандартными буквами Вт или W, а такой аббревиатурой, как VA– обозначает она вольт-амперную характеристику. По сути, если не учитывать реактивную мощность, которая возникает при работе таких устройств, как электродвигатель, это одно и то же, что и классические Ватты. Если же речь идет о комплексной нагрузке, которая учитывает активную и реактивную потребляемую мощность, то это показатель меньше, чем стандартные Ватты. То есть если речь идет о 1000VA, то при пересчете на W получится, что мощность того же инвертора меньше процентов на 15%. Именно этот момент и забывают указывать производители – его нужно просто учитывать при подборе инвертора для дачи.

Преобразователи напряжения постоянного тока

Второй момент (а вернее характеристика инвертора), который нужно учитывать при его выборе – это величина входного напряжения. Здесь есть два варианта.

  1. Инвертор преобразующий 12V в 220V.
  2. Инвертор преобразующий 24V в 220V.

Здесь все достаточно просто – если речь идет о маломощных источниках автономного или резервного электроснабжения дома, мощность которых не превышает 2-4кВт, то вполне подходят инверторы 15V. Если же говорить о более серьезных нагрузках, то лучше отдать предпочтение инвертору, рассчитанного на преобразование напряжения с током 24V. Вообще, если потребление энергии из автономного источника превышает 2000Вт, то уже лучше отдавать предпочтение второму варианту. Дело в том, что здесь возникает такой момент, как запас емкости – в аккумуляторах на 24V энергии сохранить можно больше.
 

Применение многоуровневых инверторов [ править | править код ]

Многоуровневые инверторы включают в себя матрицу силовых полупроводников и конденсаторных источников напряжения, выход которых генерирует напряжения со ступенчатыми формами сигналов. Коммутация переключателей позволяет добавлять напряжения конденсатора, которые достигают высокого напряжения на выходе, в то время как силовые полупроводники должны выдерживать только пониженные напряжения. На рисунке справа показана принципиальная схема одного фазового отрезка инверторов с различным количеством уровней, для которых действует мощность полупроводников представленных идеальным выключателем с несколькими положениями.

Двухуровневый инвертор генерирует выходное напряжение с двумя значениями (уровнями) относительно отрицательного терминала конденсатора , в то время как трехуровневый инвертор генерирует три напряжения и так далее.

Представим, что m является количеством шагов фазового напряжения относительно отрицательного терминала инвертора, тогда количество шагов в напряжении между двумя фазами загрузки k,

k = 2 m + 1 <displaystyle k=2m+1>

и количество шагов p в фазовом напряжении трехфазной нагрузки в соединении

p = 2 k − 1 <displaystyle p=2k-1>

Имеется три различные топологии для многоуровневых инверторов: зафиксированная на диод (нейтрально зафиксированная) ; зафиксированная на конденсатор (навесные конденсаторы); и каскадно-расположенный многоэлементный с отдельными источниками постоянного тока .Кроме того, несколько модуляций и стратегий управления были разработаны или приняты для многоуровневых инверторов включая следующее: многоуровневая синусоидальная модуляция длительности импульса (PWM), многоуровневое выборочное гармоническое устранение и векторная пространством модуляция (SVM).

Основные положительные стороны многоуровневых инверторов заключаются в следующем:

1) Они могут генерировать выходные напряжения с чрезвычайно низким искажением и понизить dv/dt.

2) Они тянут входной ток с очень низким искажением.

3) Они генерируют меньшее напряжение общего режима (CM), таким образом уменьшая стресс в моторных подшипниках. Кроме того, с помощью сложных методов модуляции, напряжения CM могут быть устранены.

4) Они могут работать с более низкой частотой переключения.

Топология каскадных многоуровневых инверторов

Различная топология преобразователя представленная здесь, основывается на последовательном соединении однофазных инверторов с отдельными источниками постоянного тока. Рисунок справа показывает цепь электропитания для одного участка фазы девятиуровневого инвертора с четырьмя клетками в каждой фазе. Получающееся фазовое напряжение синтезируется добавлением напряжений, сгенерированных различными участками.

Каждый однофазный инвертор полного моста генерирует три напряжения на выводе: + Vdc, 0, и — Vdc. Это стало возможным путем подключения конденсаторов последовательно с ac стороной через четыре выключателя питания. Получающееся выходное колебание напряжения переменного тока от-4 Vdc до 4 Vdc с девятью уровнями и ступенчатой формой сигнала, почти синусоидальной, даже без применения фильтров.

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Линейные и импульсные преобразователи

Рассматривая особенности применения преобразователей, будет полезно обратить внимание на классификацию, по которой они подразделяются на линейные и импульсные. По сути, данные критерии отражают два важнейших принципа функционирования преобразователей. Те, что относятся к линейным, могут работать по принципу аналоговой схемотехники, в рамках которого преобразуемые сигналы формируются плавными темпами

Импульсный преобразователь предполагает более активное представление сигналов как на выходе, так и при внутренней их обработке. Однако в случае если данная операция осуществляется лишь на внутреннем этапе обработки сигналов, соответствующее устройство может формировать фактически те же показатели, что и в случае, когда задействуется линейный преобразователь. Таким образом, понятие линейной либо импульсной обработки может рассматриваться только лишь в контексте принципа действия ключевых аппаратных компонентов девайса соответствующего типа

Те, что относятся к линейным, могут работать по принципу аналоговой схемотехники, в рамках которого преобразуемые сигналы формируются плавными темпами. Импульсный преобразователь предполагает более активное представление сигналов как на выходе, так и при внутренней их обработке. Однако в случае если данная операция осуществляется лишь на внутреннем этапе обработки сигналов, соответствующее устройство может формировать фактически те же показатели, что и в случае, когда задействуется линейный преобразователь. Таким образом, понятие линейной либо импульсной обработки может рассматриваться только лишь в контексте принципа действия ключевых аппаратных компонентов девайса соответствующего типа.

Популярные статьи  Диэлектрические щиты ограждения токоведущих частей

Импульсные преобразователи в основном задействуются в тех случаях, когда в составе используемой инфраструктуры предполагается обработка сигналов большой мощности. Это связано с тем, что КПД соответствующих устройств в подобных случаях значительно выше, чем при их использовании в целях обработки сигналов меньшей мощности. Еще один фактор выбора данных решений — задействование трансформаторных или же конденсаторных устройств в составе используемой инфраструктуры, с которыми импульсные преобразователи имеют оптимальную совместимость.

В свою очередь, линейный преобразователь — это устройство, которое применяется в рамках инфраструктуры, в которой осуществляется обработка сигналов небольшой мощности. Либо если есть необходимость снизить помехи, образующиеся вследствие работы преобразователя. Стоит отметить, что КПД рассматриваемых решений в инфраструктуре большой мощности — не самый выдающийся, поэтому данные устройства чаще всего выделяют больший объем тепла, чем импульсные преобразователи. Кроме того, их вес и габариты также существенно больше.

Но, так или иначе, на практике функционирование преобразователя по импульсному принципу может предполагать формирование его передаточной функции в линейном виде. Поэтому, прежде чем внедрять соответствующие преобразователи сигналов в состав инфраструктуры, следует рассмотреть их внутреннюю структуру на предмет применяемой схемы обработки сигналов.

Преобразователи напряжения постоянного тока

Критерии выбора

Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:

  • Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
  • Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
  • Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
  • Минимальные габариты и вес;
  • Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.

Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен. А также падения и всплескам напряжения, которые могут возникнуть в сети. Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.

Семейство частотных приводов Power Flex от Rockwell Automation

Компания Rockwell Automation, бессменный лидер на силовом электротехническом рынке, выпустила новую серию частотных электроприводов Allen-Bradley PowerFlex в диапазоне мощностей от 0.25kW до 6770kW. Новая высокоэффективная серия сочетает в себе компактное конструктивное исполнение, широкие функциональные возможности и отличные эксплуатационные характеристики. Применяется в пищевой, бумажной, текстильной промышленности, металлообработке, деревообработке, насосно-вентиляционном оборудовании и т.д. В палитре представлены два класса приводов – Компонентный и Архитектурный. Модели из Компонентного класса предназначены для решения стандартных задач регулирования, а приводы Архитектурного класса за счет гибкого изменения конфигурации могут быть легко адаптированы и встроены в системы управления различного силового оборудования. Все модели предлагают исключительные коммуникационные возможности, широкую гамму панелей оператора и средств программирования, что в значительной степени облегчает эксплуатацию и ускоряет запуск оборудования.

PowerFlex 4

Привод Powerflex 4 является наиболее компактным и недорогим представителем данного семейства. Являясь идеальным устройством регулирования скорости, данная модель обеспечивает универсальность применения с соблюдением требований производителей и конечных пользователей в отношении гибкости, компактности и простоты эксплуатации.

В приводе реализован вольт-частотный закон управления с возможностью компенсации скольжения. Прекрасным дополнением к данной модели является версия ультракомпактного приводы Power@Flex4M, c расширенным рабочим диапазоном мощностей до 2.2 kW при однофазном исполнении и до 11kW-для трехфазного напряжения 400VAC. Предлагаемая ценовая шкала на данную модель позволяет надеяться если не на хит сезона, то на достаточно широкую ее популярность.

PowerFlex 7000

Привода серии PowerFlex 7000 являются уже третьим поколением приводов среднего напряжения от Rockwell Automation. Предназначены для регулирования скорости, момента, направления вращения асинхронных и синхронных двигателей переменного тока. Уникальный дизайн серии PowerFlex 7000 представляет собой запатентованную разработку под маркой PowerCage силовых блоков, содержащих основные силовые компоненты приводы. Новый модульный дизайн прост и представлен небольшим количеством компонентов, что обеспечивает высокую надежность и облегчает эксплуатацию. К основным преимуществам приводов среднего напряжения можно отнести: уменьшение эксплуатационных расходов, возможность запуска больших двигателей от небольших источников питания и повышение качественных характеристик контролируемого технологического процесса и используемого оборудования.

В зависимости от выходной мощности поставляются привода трех типоразмеров:

  • Корпус А – Диапазон мощностей 150-900 кВт при питающем напряжении 2400-6600 В
  • Корпус В – Диапазон мощностей 150-4100 кВт при питающем напряжении 2400-6600В
  • Корпус С – Диапазон мощностей 2240-6770 кВт при питающем напряжении 4160-6600 В

Приводы PowerFlex 7000 могут поставляться с таких вариантами исполнения, как 6-пульсная или 18-пульсная схема или с ШИМ-преобразователем, что дает пользователю существенную гибкость в вопросе снижения влияния гармоник питающей сети. Кроме этого, он обеспечивает прямое бессенсорное векторное управление для улучшения регулирования в зоне низких скоростей, по сравнению с приводами, использующими метод регулирования U/f, а также возможность регулирования момента двигателя, как это осуществляется в приводах постоянного тока. В качестве панели оператора предлагается модуль с жидкокристаллическим дисплеем на 16 строк и 40 знаков.

Allen-Bradley www.rockwell.com

Особенности резистивных преобразователей

Еще один распространенный тип девайсов — резистивные преобразователи. Рассмотрим их особенности подробнее.

Данные преобразователи приспособлены к изменению собственного электрического сопротивления при воздействии той или иной измеряемой величины. Также они могут осуществлять корректировку углового и линейного перемещения. Чаще всего данные преобразователи включаются в системы автоматизации с датчиками давления, температуры, уровня освещенности, измерения интенсивности различных видов излучения. Основные преимущества резистивных преобразователей:

— надежность;

— отсутствие зависимости между точностью проводимых измерений и стабильностью питающего напряжения.

Существует большое количество разновидностей соответствующих устройств. В числе самых популярных — датчики температуры. Изучим их особенности.

Примечания

  1. ГОСТ Р 50369-92 Электроприводы. Термины и определения
  2. С. Ю. Забродин. Глава 5 Маломощные выпрямители постоянного тока, §5.1 Общие сведения // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 287. — 496 с.

  3. С. Ю. Забродин. Глава 6 Ведомые сетью преобразователи средней и большой мощности, §6.1 общие сведения // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 315. — 496 с.

  4. С. Ю. Забродин. Глава 8 Автономные инверторы, §8.1 Автономные инверторы и их классификация // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 438. — 496 с.

Это заготовка статьи об электричестве. Вы можете помочь проекту, дополнив её.

Самые распространённые схемы

Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.

Понижающий преобразователь напряжения и его схема

Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства. Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения. Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.

Популярные статьи  Правильно ли проложен провод поверх плиты перекрытия в квартире?

Повышающий преобразователь и схема

Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии. Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее. Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.

Инвертирующая схема

Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.

Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.

Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.

В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента. Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке. Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.

Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.

Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс. Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал. Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.

Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.

Что будет на выходе?

Преобразователи напряжения ради уменьшения массогабаритов устройства за редкими исключениями (см. далее) работают на повышенных частотах от сотен Гц до единиц и десятков кГц. Ток такой частоты не примет никакой потребитель, а потери его энергии в обычной проводке будут огромны. Поэтому инверторы 12-200 строятся под выходное напряжение след. видов:

  • Постоянное выпрямленное 220 В (220V AC). Пригодны для питания телефонных зарядок, большинства источников питания (ИП) планшетов, ламп накаливания, люминесцентных экономок и светодиодных. На мощность от 150-250 Вт отлично подойдут для ручного электроинструмента: потребляемая им мощность на постоянном токе немного снижается, а крутящий момент возрастает. Непригодны для импульсных блоков питания (ИБП) телевизоров, компьютеров, ноутбуков, микроволновок и т.п. мощностью более 40-50 Вт: в таких обязательно есть т. наз. пусковой узел, для нормальной работы которого сетевое напряжение должно периодически проходить через ноль. Непригодны и опасны для приборов с силовыми трансформаторами на железе и электромоторами переменного тока: стационарного электроинструмента, холодильников, кондиционеров, большей части Hi-Fi аудио, кухонных комбайнов, некоторых пылесосов, кофеварок, кофемолок и микроволновок (для последних – из-за наличия мотора вращения стола).
  • Модифицированное синусоидальное (см. далее) – пригодны для любых потребителей, кроме Hi-Fi аудио с ИБП, прочих устройств с ИБП от 40-50 Вт (см. выше) и, часто локальных охранных систем, домашних метеостанций и т.п. с чувствительными аналоговыми датчиками.
  • Чистое синусоидальное – пригодны без ограничений, кроме как по мощности, для любых потребителей электроэнергии.

Синус или псевдосинус?

С целью повышения экономичности преобразование напряжения осуществляется не только на повышенных частотах, но и разнополярными импульсами. Однако запитывать очень многие приборы-потребители последовательностью разнополярных прямоугольных импульсов (т. наз. меандром) нельзя: большие выбросы на фронтах меандра при хоть чуть-чуть реактивной нагрузке приведут к большим потерям энергии и могут вызвать неисправность потребителя. Однако проектировать преобразователь на синусодальный ток тоже нельзя – КПД не превысит прим. 0,6.

Преобразователи напряжения постоянного тока

Преобразование постоянного напряжения в модифицированную и чистую синусоиду

Тихая, но существенная в данной отрасли революция произошла, когда специально для инверторов напряжения были разработаны микросхемы, формирующие т. наз. модифицированную синусоиду (слева на рис.), хотя правильнее было бы назвать ее псевдо-, мета-, квази- и т.п. синусоидой. Форма тока модифицированной синусоиды ступенчатая, а фронты импульсов затянуты (фронтов меандра на экране электронно-лучевого осциллографа часто вообще не видно). Благодаря этому потребители с трансформаторами на железе или заметной реактивностью (асинхронными электромоторами) «понимают» псевдосинусоиду «как настоящую» и работают как ни в чем не бывало; Hi-Fi аудио с сетевым трансформатором на железе запитывать модифицированной синусоидой можно. Кроме того, модифицированную синусоиду возможно достаточно простыми способами сгладить до «почти настоящей», отличия которой от чистой на осциллографе на глаз еле заметны; преобразователи типа «Чистый синус» стоят ненамного дороже обычных, справа на рис.

Однако приборы с капризными аналоговыми узлами и ИБП запускать от модифицированной синусоиды нежелательно. Последние – крайне нежелательно. Дело в том, что средняя площадка модифицированной синусоиды не чистый ноль напряжения. Узел запуска ИБП от модифицированной синусоиды срабатывает нечетко и весь ИБП может не выйти из режима запуска в рабочий. Пользователь это видит сначала как безобразные глюки, а потом из девайса идет дым, как в анекдоте. Поэтому приборы в ИБП нужно запитывать от инверторов типа Чистый Синус.

Оцените статью
( Пока оценок нет )
Добавить комментарий