Общее описание
У асинхронной машины по сравнению с машиной постоянного тока полюса не явно выражены, т. е. это неявнополюсная магнитная система. Чтобы уменьшить вихревые токи, статорный сердечник набран из изолированных штампованных стальных листов 0,35-0,5 мм в толщину, закрепленных в стальном остове. Пазы статора заполнены обмоткой из медного провода. Обмотки статорных фаз могут соединяться в «звезду» или «треугольник», для этого их входы и выходы располагаются на специальном изолированном от корпуса щитке. Это создает массу удобств, поскольку есть возможность подводить к обмоткам статора напряжение разной величины. Ротор в асинхронной машине, как и охватываемая деталь, состоит из электротехнических стальных листов, а в пазы заложена обмотка. В функции от исполнения ротора асинхронных моторов машины бывают короткозамкнутыми и фазными. Не изолированная обмотка из меди короткозамкнутого ротора в виде стержней укладывается в его пазах. Торцы стержней соединяют медные кольца. Обмотка такого типа названа «беличьей клеткой». Иногда вместо нее пользуются отлитым узлом вращения. Из асинхронных машин с фазным ротором (наличие контактных колец) состоят мощные приводы. Также ими создается большое усилие в момент трогания с нуля. С этой целью в их обмотки включается реостат пуска. В мощных машинах между ротором и статором зазор составляет 1-1,5 мм, в моторах малой мощности он и того меньше. Вал опирается на подшипники, установленные в крышках.
Технические характеристики электродвигателей серии АИР 100
Тип двигателя | АИР 100 S4/2 |
Номинальная мощность, кВт | 3,000/3,750 |
Синхронная частота вращения, об/мин | 1500/3000 |
Масса (IМ 1081), кг | 24,2 |
Тип двигателя | АИР 100 L4/2 |
Номинальная мощность, кВт | 4,000/4,750 |
Синхронная частота вращения, об/мин | 1500/3000 |
Масса (IМ 1081), кг | 29,2 |
Тип двигателя | АИР 100 S6/4 |
Номинальная мощность, кВт | 1,700/2,240 |
Синхронная частота вращения, об/мин | 1000/1500 |
Масса (IМ 1081), кг | 22,5 |
Тип двигателя | АИР 100 L6/4 |
Номинальная мощность, кВт | 2,120/3,150 |
Синхронная частота вращения, об/мин | 1000/1500 |
Масса (IМ 1081), кг | 27,1 |
Тип двигателя | АИР 100 S8/4 |
Номинальная мощность, кВт | 1,000/1,700 |
Синхронная частота вращения, об/мин | 750/1500 |
Масса (IМ 1081), кг | 21,5 |
Тип двигателя | АИР 100 L8/4 |
Номинальная мощность, кВт | 1,400/2,360 |
Синхронная частота вращения, об/мин | 750/1500 |
Масса (IМ 1081), кг | 26,2 |
Тип двигателя | АИР 100 S8/6 |
Номинальная мощность, кВт | 1,000/1,250 |
Синхронная частота вращения, об/мин | 750/1000 |
Масса (IМ 1081), кг | 22,0 |
Тип двигателя | АИР 100 L8/6 |
Номинальная мощность, кВт | 1,320/1,800 |
Синхронная частота вращения, об/мин | 750/1000 |
Масса (IМ 1081), кг | 26,0 |
Тип двигателя | АИР 100 S6/4/2 |
Номинальная мощность, кВт | 1,120/1,250/1,600 |
Синхронная частота вращения, об/мин | 1000/1500/3000 |
Масса (IМ 1081), кг | 23,0 |
Тип двигателя | АИР 100 L6/4/2 |
Номинальная мощность, кВт | 1,400/1,500/2,120 |
Синхронная частота вращения, об/мин | 1000/1500/3000 |
Масса (IМ 1081), кг | 27,0 |
Тип двигателя | АИР 100 S8/4/2 |
Номинальная мощность, кВт | 0,630/1,320/1,700 |
Синхронная частота вращения, об/мин | 750/1500/3000 |
Масса (IМ 1081), кг | 23,5 |
Тип двигателя | АИР 100 L8/4/2 |
Номинальная мощность, кВт | 0,900/1,500/2,100 |
Синхронная частота вращения, об/мин | 750/1500/3000 |
Масса (IМ 1081), кг | 28,2 |
Тип двигателя | АИР 100 S8/6/4 |
Номинальная мощность, кВт | 0,560/1,120/2,800 |
Синхронная частота вращения, об/мин | 750/1000/1500 |
Масса (IМ 1081), кг | 23,0 |
Тип двигателя | АИР 100 L8/6/4 |
Номинальная мощность, кВт | 0,710/1,200/3,000 |
Синхронная частота вращения, об/мин | 750/1000/1500 |
Масса (IМ 1081), кг | 27,5 |
Многоскоростной асинхронный двигатель
Многоскоростные асинхронные двигатели обладают механическими характеристиками, различными для каждого числа пар полюсов.
Кривые вращающих моментов асинхронного двигателя при регулировании скорости вращения уменьшением напряжения на зажимах статора. |
Многоскоростные асинхронные двигатели малой мощности применяют для привода вентиляторов, мелких станков в промышленности, в звукозаписывающей аппаратуре и других случаях.
Поэтому многоскоростные асинхронные двигатели практически выполняют только с к.
Использование многоскоростных асинхронных двигателей можно реализовать для правильного геометрического ряда только для тех знаменателей, которые являются корнем целой степени из двух.
Применение многоскоростного асинхронного двигателя и коробки скоростей с электромагнитными муфтами дает ступенчатое изменение скоростей с дистанционным управлением во всем диапазоне. Такая система может быть применена также при необходимости изменения числа оборотов на ходу для поддержания постоянной скорости резания.
Схема двухслойной полюснопереключаемой обмотки на четыре я. |
Размеры многоскоростных асинхронных двигателей всегда больше размеров нормального односкоростного двигателя, рассчитанного на тс же наибольшие мощность и скорость вращения, что и первый.
Схема 5С переключателя для двухскоростного двигателя.| Схема 6С переключателя для двухскоростного двигателя.| Схема 7С переключателя для трехскоростного двигателя. |
Управление многоскоростными асинхронными двигателями может осуществляться автоматически или ручными переключателями полюсов.
В статорах многоскоростных асинхронных двигателей применяют обмотки, которые могут быть включены на различное число полюсов. Частота вращения двигателя изменяется при этом ступенчато, обратно пропорционально числу полюсов обмотки. Изменения числа полюсов двигателя можно достичь двумя путя га: установкой в пазы статора двух независимых друг от друга обмоток, выполненных на различные числа полюсов, или переключением схемы соединения катушечных групп одной обмотки. Обмотки, рассчитанные для такого способа переключения, называют полюсно-переключаемыми.
Схема двухслойной концентрической обмотки, Z24, 2p4, al, у2. |
В статорах многоскоростных асинхронных двигателей применяют обмотки, которые могут быть включены на различное число полюсов. Частота вращения двигателя изменяется при этом ступенчато, обратно пропорционально числу полюсов обмотки.
Регулирование числа оборотов многоскоростных асинхронных двигателей производится ступенями путем переключения полюсов двигателя; выпускаются многоскоростные двигатели на две, три и четыре скорости вращения.
Узел схемы торможения асинхронного двигателя противовключением в функции э. д. с.| Узел схемы динамического торможения двигателя постоянного тока в функции э. д. с. |
Почему дизельный мотор лучше: Сравнение дизельных двигателей с бензиновыми
Задумывались ли вы почему экономные Европейцы чаще всего приобретают дизельные автомобили? Ведь уровень жизни и доходы населения в Европе позволяет людям не задумываться о топливе. Но несмотря на благосостояние, население Европы все равно чаще покупает автомобили с дизельными моторами. И причина здесь не только в экономии топлива. Европейцы из-за одной только экономии никогда бы не стали массово скупать дизельные автомобили. На самом деле популярность дизельных двигателей в Евросоюзе связана с рядом преимуществ, которые имеют дизельные транспортные средства по сравнению с их бензиновыми аналогами. Давайте узнаем какие-же, помимо экономии топлива, есть преимущества у дизельных двигателей.
Как все начиналось?
Предком современного рядного ДВС был одноцилиндровый двигатель. Придумал и построил его Этьен Ленуар еще в 1860 году. Принято считать именно так, хотя попытки получить патент на данный двигатель были и еще до Ленуара. Но именно его разработка максимально похожа на те конструкции, что сегодня установлены под капотами большинства бюджетных серийных легковых авто.
Вам будет интересно: «Тойота»: страна производитель, деятельность в мире и России
Мотор имел всего один цилиндр, а мощность его была равна огромным на то время 1,23 лошадиным силам. Для сравнения, современная «Ока» 1111 имеет два цилиндра и мощность ее от 30 до 53 лошадиных сил.
Многоскоростные электродвигатели
Двухскоростные электродвигатели с меняющейся полярностью отличаются от тех, которые имеют одну скорость, преимущественно обмоткой статора, которая имеет дле скорости.
Двухскоростные двигатели с отношением полей 1:2 (например, 2/4, 4/8 и т.д.) комплектуются одной обмоткой, в то время как те двигатели, которые имеют различные соотношения полей (например, 2/4, 6/8, 2/8) комплектуются двумя отдельными обмотками.
Для получения информации по трехскоростным двигателям необходимо связаться с техническим отделом нашей компании.
Асинхронные трехфазные многоскоростные электродвигатели
Закрытого исполнения С наружной вентиляцией С короткозамкнутым ротором Класс защиты IP 55 Типоразмер электродвигателя DP63-DP160
2/4, 4/6, 4/8, 2/6, 2/8, 6/8, 2/12 полюсов
Асинхронные трехфазные многоскоростные электродвигатели с тормозом
Закрытого исполнения Принудительная вентиляция С короткозамкнутым ротором С ручкой ручного растормаживания Степень защиты электродвигателя IP 55 Степень защиты тормоза IP 44, IP 55 по запросу Типоразмер электродвигателя MADP63-MADP160 2/4, 4/6, 4/8, 2/6, 2/8, 6/8, 2/12 полюсов
Многоскоростные двигатели имеют две или большее количество обмоток. Обмотки управляют числом полюсов, и следовательно — скоростью.
Принцип действия
Как действует ДВС? Не считая того, что каждый двигатель имеется разное количество цилиндров, рядный двигатель с шестью или четырьмя цилиндрами работает одинаково. Принцип основывается на традиционных характеристиках любых ДВС.
Все цилиндры в блоке располагаются в один ряд. Коленчатый вал, приводимый в действие поршнями за счет энергии сгорания топлива, единственный для всех деталей цилиндро-поршневой группы. То же самое касается и ГБЦ. Она единственная на все цилиндры. Из всех существующих рядных двигателей можно выделить сбалансированные и несбалансированные конструкции. Оба варианта рассмотрим далее.
Разные типы двигателя
В отличие от трёхфазного, однофазный асинхронный двигатель часто применяется в бытовой технике – пылесосах, стиральных машинах, вентиляторах, кухонных комбайнах, блендерах и т.д. Они же применяются в магнитофонах и проигрывателях виниловых дисков. Даже в составе персонального компьютера можно найти не один асинхронный двигатель. Но к устройству этой версии двигателя мы вернёмся чуть позже.
Первым появился на свет именно трёхфазный электродвигатель, принцип работы которого строился на взаимодействии электромагнитных полей. Основные части асинхронного двигателя – это статор и ротор. Соответственно, статором была названа часть, которая остаётся неподвижной. Именно она находится непосредственно под внешней оболочкой устройства и имеет форму цилиндра. В этой части по кругу расположены три обмотки – под углом 120° друг к другу.
В современных двигателях можно насчитать множество обмоток, однако, они соединены друг с другом так, чтобы каждая последующая отличалась от предыдущей по фазе, и фазовый сдвиг между соседними обмотками составлял 120°. Обмотки наматываются медным проводом, и к каждой из групп подключается напряжение со своей фазы. Таким образом, получается, что магнитное поле движется по этим обмоткам, как бы замыкаясь в кольцо.
Статор тоже имеет свои обмотки. Так как на статор электричество не подаётся, он имеет право на замкнутый проводник, который иногда вместо обмоток формируют в виде так называемой беличьей клетки. Если сравнивать точнее, то эта деталь напоминает не саму клетку для проворного грызуна, а беличье колесо, предназначенное для того, чтобы животное выплёскивало свою неуёмную энергию. В роторе устройства «беличья клетка» формируется путём заливки расплавленного алюминия в пазы сердечника, выполненного из набранных стальных листов. Такое устройство называется короткозамкнутым ротором.
Если статор выполнен с реальными обмотками, то он обычно делается многополюсным. Такой ротор называют фазным. Обмотки этого ротора замыкают звездой или треугольником.
Ротор имеет собственный вал, который опирается на задний и передний подшипники. Они, в свою очередь, закреплены на корпусе двигателя так, что ротор внутри статора может свободно вращаться. Принцип действия асинхронных двигателей основан на том, что в обмотках или «беличьем колесе» статором наводится магнитное поле. Под его действием в проводниках ротора появляется ток, а с ним – собственное магнитное поле.
Переменное магнитное поле статора увлекает за собой ротор, и тот начинает вращаться. Но магнитное поле ротора всегда запаздывает относительно поля статора, и вращение обоих полей не может происходить синхронно. Это заставляет ротор преодолевать множество действующих на него сил:
- силу тяготения;
- трение качения (если используется шариковый или роликовый подшипник);
- трение скольжения (если в качестве подшипника применяется бронзовая втулка);
- силу противодействия приводимого в движение оборудования.
Последняя сила зависит от многих моментов, поэтому её невозможно свести к какому-либо простейшему физическому параметру. Если надо сдвинуть с места трамвай, то двигателю приходится на себя брать нагрузку от редуктора, который надо раскрутить, от самого вагона, который надо сдвинуть, к тому же не надо забывать ещё и о силе трения качения, которое испытывают колёса транспортного средства.
В случае когда идет описание работы профессиональной мясорубки, которую приводит в действие асинхронный двигатель, то здесь преодолевается сопротивление и самого редуктора, и того куска мяса или даже кости, которую надо перемолоть.
Поскольку между статором и ротором есть зазор, то ротор под нагрузкой просто отстаёт от статора по угловой скорости. Следовательно, частота вращения ротора зависит от нагрузки на вал двигателя. Нарушается принцип синхронности, оттуда и название самого устройства: «асинхронный двигатель».
Тупиковый путь
Скоро всем стало понятно, что исследования зашли в тупик. Двигатель Ленуара не смог нормально и корректно работать, так как соотношение мощности, массы и размеров было ужасным. Нужна была масса дополнительной энергии, чтобы снова увеличивать объем цилиндра. Многие стали считать идею создания двигателя крахом. И люди до сих пор бы ездили на лошадях и повозках, если бы не одно техническое решение.
Конструкторы начали осознавать, что можно вращать коленчатый вал не только одним поршнем, но и сразу несколькими. Самым простым оказалось изготовление рядного двигателя – добавили еще несколько цилиндров.
Первый четырехцилиндровый агрегат мир смог увидеть в конце XIX века. Сравнить его мощность с современным двигателем нельзя. Однако по эффективности он был выше, чем все прочие его предшественники. Мощность удалось увеличить благодаря повышенному рабочему объему, то есть посредством добавления цилиндров. Довольно быстро специалисты различных компаний смогли создать многоцилиндровые моторы вплоть до 12-цилиндровых монстров.
V-образный двигатель
V-образная схема двигателя — схема расположения цилиндров поршневого двигателя внутреннего сгорания, при которой цилиндры размещаются друг напротив друга под углом от 1° до 180° (наиболее часто 45°, 60° и 90°) в форме латинской буквы «V». В настоящее время в автомобилях чаще всего встречаются конфигурации с 6, 8, в спортивных моделях с 10 и 12 цилиндрами. В мотоциклах — с 2, 4, в спортивных моделях с 5, 6 цилиндрами. В авиационных или корабельных двигателях — с 4, 5, 10, 12 или более цилиндрами. Позволяет сократить линейные размеры мотора по сравнению с рядным расположением цилиндров.
См. также
Оппозитный двигатель
Постоянного тока • Переменного тока • Трёхфазные • Двухфазные • Однофазные • Универсальные | |
Асинхронные | Конденсаторный двигатель |
---|---|
Синхронные | Бесколлекторные • Коллекторные • Вентильные реактивные • Шаговые |
Другие | Линейные • Гистерезисные • Униполярные • Ультразвуковые • Мендосинский мотор |
Wikimedia Foundation . 2010 .
- Насер, Гамаль Абдель
- Просвирнов, Михаил Алексеевич
Смотреть что такое «V-образный двигатель» в других словарях:
U-образный двигатель — Bugatti U образный двигатель условное обозначение силовой установки, представляющей собой два рядных двигателя, коленчатые валы которых механически соединены при по … Википедия
W-образный двигатель — W образный двенадцатицилиндровый двигатель двигатель внутреннего сгорания с W образным расположением двенадцати цилиндров четырьмя рядами по три (даже на фото видно что три ряда по четыре цилиндра. Фото неверное, на фото … Википедия
X-образный двигатель — Упрощённая конструктивная схема X образного двигателя в исполнении Х 24. X образный двигатель это поршневой двигатель, содержащий сдвоенные V блоки, горизонтально оппозитные по отношению друг к другу. Таки … Википедия
V-образный двигатель — – двигатель, в котором цилиндры расположены под углом друг к другу в 2 х плоскостях (угол обычно – 45, 60 или 90 град). EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь
Двигатель Стирлинга — Двигатель Стирлинга … Википедия
Двигатель Ленуара — в двух проекциях … Википедия
Двигатель внутреннего сгорания — Схема: Двухтактный двигатель внутреннего сгорания с глушителем … Википедия
Двигатель — У этого термина существуют и другие значения, см. Двигатель (значения). Двигатель, мотор (от лат. motor приводящий в движение) устройство, преобразующее какой либо вид энергии в механическую. Этот термин используется с конца XIX века… … Википедия
Двигатель Вальтера — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия
Двигатель внешнего сгорания — Статья состоит из словарного определения термина. Пожалуйста, доработайте статью, приведя ее в соответствие с правилами. Подробности могут быть на странице обсуждения. В Википедии статьи, состоящие только из словарного определения, не… … Википедия
В выхлопе дизельного автомобиля меньше окиси углерода
Дизельные моторы производят гораздо меньше окиси углерода чем бензиновые аналоги. Это преимущество особо очевидно в неавтомобильных силовых установках, таких как например дизель-генераторах. Бензиновые установки более опасны так как из-за большой концентрации окиси углерода существует опасность для человека, который может отравиться угарными газами. Вот почему в подводных лодках, подземных шахтах всегда используются только дизельные силовые установки. Ведь при применении бензиновых силовых агрегатов существовала бы опасность для людей.
Тем не менее это не говорит о том, что вы можете безопасно находится долгое время в закрытом помещение при работающем дизельном автомобиле. Помните, что дизельный выхлоп все равно содержит окись углерода. Правда в гораздо меньших количествах чем производят бензиновые моторы.
Не забывайте про эффект накопления концентрации газов в закрытом помещение. Иначе существует опасность отравления угарными газами дизельного автомобиля.
Рядные четырехцилиндровые силовые агрегаты
Начнем с одного из самых распространенных двигателей – рядного четырехцилиндрового. Есть причина, по которой он так распространен. В основном потому, что это так просто: один блок цилиндров, одна головка цилиндров и один клапанный механизм. Вот все, что вам нужно о нем знать:
Преимущества:
Четырехцилиндровый рядный двигатель негабаритен и компактен, значит, его легко расположить под капотом практически любого автомобиля;
Он также немного весит сам по себе, а за счет того, что на этот тип мотора ставится всего лишь один выпускной коллектор, вес дополнительно уменьшается;
Поскольку у него только одна головка цилиндров, это означает наличие меньшего количества движимых частей по сравнению с моторами с развалом. Это означает меньшие энергопотери и уменьшает вероятность неисправностей;
Двигатель хорошо сбалансирован, поскольку два внешних поршня движутся в противоположном направлении от внутренних двух поршней (см. рисунок выше);
Четырехцилиндровые двигатели просты в обслуживании и починке. Головка блока – это высшая точка, которая делает доступ к свечам и приводу клапанов незатруднительным;
Четырехцилиндровые двигатели требуют менее высоких производственных затрат.
Минусы:
Несмотря на то что первичные силы сбалансированы идеально, этого нельзя сказать о так называемых вторичных силах, действующих на работу мотора, что в конечном счете ограничивает размеры двигателя;
Рядные четверки редко превышают объем 2,5 литра;
В больших по объему четырехцилиндровых двигателях возникает необходимость балансировки валов для снижения уровня вибрации из-за тех самых вторичных сил;
Высокий центр тяжести по сравнению с некоторыми компоновками оппозитных H4;
Не такие «неубиваемые», как некоторые версии V6 и V8.
Вот краткое видео, объясняющее принцип работы четырехцилиндрового двигателя:
Рядный шестицилиндровый
Объект привязанности инженеров, рядная шестерка является результатом прикрепления двух дополнительных цилиндров к рядному четырехцилиндровому двигателю. BMW любит их, Toyota частенько использовала такие двигатели тоже, сделав один из самых известных своих моторов – 2JZ. Так что такого особенного в этой шестерке?
Преимущества:
Рядная шестерка изначально сбалансирована;
Компоновка в сочетании с порядком воспламенения смеси в цилиндрах создает практически самый «гладкий» в работе мотор. В плане уменьшения вибраций круче могут быть только V12 и оппозитные 12-цилиндровые моторы, которые являются следующим шагом в эволюции, так как они представляют собой сдвоенные шестицилиндровые моторы, соединенные вместе;
Но по сравнению с «V»-образными компоновками производственные затраты на один блок со всеми цилиндрами в одной плоскости весомо снижаются;
Простой дизайн, легко работать с двигателем и чинить его. Также как с рядным четырехцилиндровым мотором.
Минусы:
Капот должен соответствовать длине силового агрегата, автомобиль должен быть средних размеров;
Не идеальное решение для переднеприводных автомобилей;
Высокий центр тяжести, особенно в сравнении с оппозитными моторами;
Конструкция не настолько жесткая, как «V»-образные двигатели, так как мотор – длинный и достаточно узкий.
Вот краткое видеообъяснение принципа работы шестицилиндрового мотора:
Подключение многоскоростных моторов
Если работа асинхронного электродвигателя может иметь несколько режимов, отличающихся по скорости вращения ротора, то говорят, что он многоскоростной. Различают двухскоростной, трехскоростной и четырехскоростной вариант исполнения. Схемы их подключения сложные, но основываются на уже рассмотренных нами способах соединения: «звезда» и «треугольник».
Двухскоростной мотор может подключаться тремя способами:
- Треугольник/двойная звезда (на рисунках обозначен буквой «а»). Подходит для подключения электродвигателя, низшая частота вращения которого вдвое меньше высшей частоты (отношение 1 к 2). Схема «треугольник» активна при низких оборотах, а «двойная звезда» — при высоких;
- Треугольник/сдвоенная звезда с прибавочной обмоткой (на рисунках буква «б»). Схема хороша для двигателей со следующими отношениями частот: 2 к 3 и 3 к 4;
- Тройная звезда/тройная звезда без дополнительной обмотки (на рисунке буква «в»). Схема подходит в тех же случаях, что и треугольник/двойная звезда с использованием дополнительной обмотки.
Подключение трехскоростного асинхронного двигателя отличается лишь тем, что у такого мотора не одна, а две обмотки, которые не зависят друг от друга. Первая подключается так же, как двухскоростной мотор с одной обмоткой по схеме «а». Вторая соединяется звездой. Всего выводов – 9.
У четырехскоростного мотора тоже две независимые друг от друга обмотки. Но в отличие от трехскоростного двигателя подключение каждой обмотки производится по схеме треугольник/сдвоенная звезда.
Баланс
Он важен по причине сложной конструкции коленчатого вала. Необходимость в балансировке зависит от числа цилиндров. Чем больше их в конкретном ДВС, тем большим должен быть баланс.
Несбалансированным двигателем может быть лишь та конструкция, где цилиндров не больше четырех. В противном случае в процессе работы появятся вибрации, сила которых будет способна разрушить коленчатый вал. Даже дешевые двигатели с шестью цилиндрами с балансиром будут лучше, чем дорогие рядные четверки без балансирных валов. Так, чтобы улучшить баланс, рядный двигатель с четырьмя поршнями иногда тоже может требовать установки успокоительных валов.
Недостатки оппозитного мотора
Прежде всего, стоит указать высокую стоимость обслуживания и практически полную невозможность выполнить ремонт в домашних условиях. Даже простая замена свечей зажигания требует наличия специального оборудования. При этом в сторонних автосервисах сложно найти специалиста достаточно высокой квалификации для ремонта оппозитного двигателя. Кстати, здесь будет также уместным выделить огромное количество модификаций агрегатов даже в пределах одной марки. Этим «грешит», например, бренд Субару, который сегодня является основным производителем моторов данного типа. Само собой, такая позиция усложняет ремонт, так как возможность взаимозаменить детали сводится к минимуму.
Стоимость нового автомобиля с оппозитным двигателем может оказаться заметно выше стоимости машины такой же комплектации, но с более традиционным типом ДВС. А все дело в затратах на производство самого оппозитника. Определенную роль играет и дороговизна запчастей, которая напрямую связана с указанными выше причинами.
Добавим еще пару слов о специальном оборудовании. Например, автовладельцы со стажем и опытом знают, что шейки коленвала время от времени приходится шлифовать. Операция эта проводится на станке и не очень дорого стоит применительно к обычному ДВС. Но только если речь не идет об оппозитниках. Например, на субаровских авто шейки очень узкие и шлифовать их нужно на специальных станках.
Также отметим, что в оппозитных моторах быстрее засоряется картер двигателя по сравнению с V-образными или рядными конструкциями. Оппозитному двигателю присущ большой расход моторного масла, что обуславливается конструкцией силовой установки данного типа. А в случае, когда установлена турбина, масла расходуется еще больше.
Как устроен асинхронный двигатель
Первая главная деталь в электромоторе называется статором, вторая – ротором. Статор сделан в форме цилиндра из крепкого листа нержавеющей стали. Внутри сердечника статора установлены обмотки из специальных проводов. Оси проводов укладываются под углом в 120°. Для работы на разных электросетях концы кабелей скрепляются в виде треугольника или звезды.
Роторы в асинхронном двигателе подразделяются на 2 типа:
- Короткозамкнутый. Он является сердечником, в который заливается раскаленный металл. После этого в нем появляются железные стержни, замыкающиеся маленькими торцевыми колечками. Подобная схема конструкции именуется “беличьей клеткой”. В устройствах с высокой мощностью алюминий заменяется на медь.
- С фазами. Мотор имеет толстую трехфазную обмотку, которая почти не отличается от обмотки статора. В основном концы проводов скрепляются в форме звезды, а затем дополнительно закрепляются колечками. Используя щетку, которая подсоединена к обручам, к цепи можно подключить дополнительный резистор. Последний необходим для того, чтобы человек мог контролировать переменное сопротивление в фазе ротора.
История появления
История создания асинхронного электродвигателя начинается в 1888 году, когда Никола Тесла запатентовал схему электродвигателя, в этом же году другой ученый в области электротехники Галлилео Феррарис опубликовал статью о теоретических аспектах работы асинхронной машины.
В 1889 году российский физик Михаил Осипович Доливо-Добровольский получил в Германии патент на асинхронный трехфазный электрический двигатель.
Все эти изобретения позволили усовершенствовать электрические машины и привели к тому, что в промышленность стали массово применяться электрические машины, которые значительно ускорили все технологические процессы на производстве, повысили эффективность работы и снизили её трудоемкость.
В настоящий момент самый распространенный электродвигатель, эксплуатируемый в промышленности, является прототипом электрической машины, созданной Доливо-Добровольским.
Предупреждение повреждения изоляции обмотки статора асинхронного электродвигателя
Причины повреждения обмоток статора асинхронных электродвигателей
Большинство аварий электрических машин связано с повреждением обмотки статора
Примечание. Высокая повреждаемость обмотки объясняется тяжелыми условиями работы и недостаточной стабильностью электрических свойств изоляционных материалов.
В результате повреждения изоляции может произойти замыкание между:
— обмоткой и магнитопроводом;
— витками катушек или между фазными обмотками.
Основной причиной повреждения изоляции
является резкое снижение электрической прочности под влиянием:
— увлажнения обмотки;
— загрязнения поверхности обмотки;
— попадания в электродвигатель металлической стружки токопроводящей пыли;
— наличия в охлаждающем воздухе паров различных жидкостей;
— продолжительной работы электродвигателя при повышенной температуре обмотки;
— естественного старения изоляции.
Увлажнение обмотки
может произойти вследствие продолжительного хранения или эксплуатации электродвигателя в сыром неотапливаемом помещении. В установленном электродвигателе увлажнение может произойти при длительном неподвижном состоянии, особенно при повышенной влажности окружающего воздуха или при попадании воды непосредственно в электродвигатель.
Совет. Для предупреждения увлажнения обмотки во время хранения электродвигателя необходимы хорошая вентиляция складского помещения и умеренное отапливание в холодное время года. В периоды длительных остановок электродвигателя при сырой и туманной погоде следует закрывать задвижки воздушных каналов поступающего и выходящего воздуха. При теплой сухой погоде все задвижки должны быть открыты.
Во избежание образования водяной бани недопустимо хранение электродвигателей, укрытых брезентом и другими водонепроницаемыми материалами. Такое хранение допускается в случае установки дистанционирующих прокладок между корпусом электродвигателя и тентом. Необходима также регулярная вентиляция воздушного зазора и осушение воздуха помещений.
Загрязнение обмотки электродвигателя
происходит, главным образом, вследствие использования для охлаждения недостаточно чистого воздуха. Вместе с охлаждающим воздухом в электродвигатель могут попадать угольная и металлическая пыль, сажа, пары и капли различных жидкостей. Вследствие износа щеток и контактных колец образуетсяпроводящая пыль , которая при встроенных контактных кольцах оседает на обмотках электродвигателя.
Предотвращение загрязнения может быть достигнуто внимательным уходом за электродвигателем и тщательной очисткой охлаждающего воздуха. Необходимо:
— периодически осматривать электродвигатель;
— очищать его от пыли и грязи;
— в случае необходимости производить мелкий ремонт изоляции.
При повышенном нагревании, а также в результате естественного старения изоляция в значительной мере утрачивает механическую прочность, становится хрупкой и гигроскопичной.
При длительной работе машины крепления пазовых и лобовых частей обмотки ослабляются и вследствие вибрации их изоляция разрушается
. Изоляция обмотки может быть повреждена:
— из-за небрежной сборки и транспортировки электродвигателя;
— вследствие разрыва вентилятора или бандажа ротора;
— в результате задевания ротора за статор.
Сопротивление изоляции обмотки статора асинхронных электродвигателей
О состоянии изоляции можно судить по ее сопротивлению. Минимальное сопротивление
изоляции зависит: от напряжения U, В; электродвигателя и его мощности Р, кВт.
Сопротивление изоляции обмоток от магнитопровода и между разомкнутыми фазными обмотками при рабочей температуре электродвигателя должно быть не менее 0,5 МОм.
Совет. При температуре ниже рабочей это сопротивление необходимо удваивать на каждые 20°С (полные или неполные) разности между рабочей температурой и той температурой, для которой оно определяется.
Дизельные двигатели надежнее чем бензиновые
За последние более чем 50 лет дизельные моторы зарекомендовали себя надежнее чем их бензиновые конкуренты. Главной особенностью дизельного мотора является отсутствие в дизельной машине системы зажигания, работающей от высокого напряжения. В итоге в дизельной машине отсутствуют радиочастотные помехи от линии высокого напряжения, которые часто становятся виновниками проблем с электроникой автомобиля.
Также считается что большинство внутренних компонентов дизельного двигателя имеют более долгий срок службы. И это действительно так, поскольку из-за более высокой степени сжатия компоненты дизельного силового агрегата изначально более долговечны.
Именно поэтому в мире очень много дизельных автомобилей с пробегом около 1 млн. километров и немного бензиновых с таким же пробегом.
Есть правда один минус дизельных моторов, который раньше не давал покоя поклонникам мощных автомобилей. Дело в том, что у дизельных двигателей старых поколений на каждый литр объема мотора была очень маленькая мощность. Но к счастью инженеры решили эту проблему с появлением на рынке турбин. В итоге почти все современные дизельные моторы оснащаются турбинами, которые позволили им сравняться по мощности (а порой даже превзойти) с бензиновыми аналогами. В том числе с развитием технологий в современных дизелях удалось минимизировать практически все недостатки, которые преследовали дизельные моторы долгое время.
А как же дизели?
Во ВМВ дизели не завоевали особой славы. Но перед войной разработки широко велись во многих странах. Дизели фирм Паккард, Юнкерс, Клерже, Бристоль тому пример. Почему же тратилось столько труда? Перед карбюраторными моторами дизель имеет ряд преимуществ. Благодаря высокому КПД, дизель очень экономичен. Благодаря впрыску, дизель сохраняет номинальную мощность на более бедной смеси. И потому меньше теряет мощность с высотой. А бОльший крутящий момент позволяет лучше переносить изменение нагрузки и дольше сохранять неизменные обороты или угол атаки лопастей пропеллера.
Но имеется у дизелей один недостаток. Большая степень сжатия вынуждает делать более прочный, но потому и более тяжёлый мотор. Проигрыш перед карбюраторными в удельных параметрах становится уж больно большой. Но это ещё пол беды. Избыток в весе авиадизеля перекрывается экономией топлива через 2-3 часа полёта. Главная беда заключалась в увеличенных сроках доводки мотора в связи с большой сложностью конструкции. На момент доводки дизеля, он был уже никому не нужен из-за своих слабых удельных параметров и малой мощности.
Потому и получились серийные дизели, нашедшие применение на самолётах, только в двух странах. В Германии и СССР. Немцы пошли по пути доводки ресурса и получили надёжные, но маломощные авиадизели Юмо. Мы сделали ставку на высокие удельные параметры и мощность. Получив по циферкам неплохие, но ненадёжные дизели Чаромского и Яковлева.
После войны наработки по авиадизелям нашли применение в танкостроении.