Пониженное напряжение в конечных электрических цепях электроустановки здания

3.4. Установка заземления

3.4.1. Устанавливать заземления на токоведущие части необходимо непосредственно после проверки отсутствия напряжения.

3.4.2. Переносное заземление сначала нужно присоединить к заземляющему устройству, а затем, после проверки отсутствия напряжения, установить на токоведущие части.

Снимать переносное заземление необходимо в обратной последовательности: сначала снять его с токоведущих частей, а затем отсоединить от заземляющего устройства.

3.4.3. Установка и снятие переносных заземлений должны выполняться в диэлектрических перчатках с применением в электроустановках напряжением выше 1000 В изолирующей штанги. Закреплять зажимы переносных заземлений следует этой же штангой или непосредственно руками в диэлектрических перчатках.

3.4.4. Не допускается пользоваться для заземления проводниками, не предназначенными для этой цели, кроме случаев, указанных в п. 4.4.2 настоящих Правил.

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Вам это будет интересно Обозначение ват

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пониженное напряжение в конечных электрических цепях электроустановки здания
Пример калькулятора для автоматизации вычислений

Периодичность проверки

Для проверки текущего состояния ЗУ согласно требованиям ПУЭ проводятся периодические испытания заземляющих контуров. Они позволяют убедиться в соответствии их параметров (сопротивления стеканию тока, в частности) установленным нормативам.

В ПУЭ также оговаривается, что периодичность проверки (испытаний) действующих систем зависит от класса самого проводимого обследования. Так, визуальные осмотры заземляющих конструкций должны проводиться не реже одного раз в полгода. Если та же процедура сопровождается выборочным вскрытием почвы в вызывающих подозрения местах – проверки проводятся не реже раза в 12 лет. Нормы и сроки проверок для различных конструкций заземляющих устройств могут несколько отличаться от рассмотренных показателей (смотрите монографию Р. Н. Карякина под тем же названием).

В заключение отметим, что после ознакомления с предложенным материалом заинтересованный пользователь сможет четко представить себе, для чего нужно заземление и как оно обустраивается. Знание всех тонкостей этого вопроса поможет ему уберечь себя и своих близких от опасности поражения электрическим током. Кроме того, умение разбираться в них обеспечит сохранность эксплуатируемого на объекте электрооборудования.

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Помогла46Не помогла7

1.7.83

Система дополнительного уравнивания потенциалов
должна соединять между собой все одновременно доступные прикосновению открытые
проводящие части стационарного электрооборудования и сторонние проводящие
части, включая доступные прикосновению металлические части строительных
конструкций здания, а также нулевые защитные проводники в системе  и защитные заземляющие
проводники в системах  и
, включая
защитные проводники штепсельных розеток.

Для уравнивания потенциалов могут быть использованы
специально предусмотренные проводники либо открытые и сторонние проводящие
части, если они удовлетворяют требованиям 1.7.122 к защитным проводникам в
отношении проводимости и непрерывности электрической цепи.

Общие требования

1.2.11. При проектировании систем электроснабжения и реконструкции электроустановок должны рассматриваться следующие вопросы:

  1. перспектива развития энергосистем и систем электроснабжения с учетом рационального сочетания вновь сооружаемых электрических сетей с действующими и вновь сооружаемыми сетями других классов напряжения;
  2. обеспечение комплексного централизованного электроснабжения всех потребителей электрической энергии, расположенных в зоне действия электрических сетей, независимо от их принадлежности;
  3. ограничение токов КЗ предельными уровнями, определяемыми на перспективу;
  4. снижение потерь электрической энергии;
  5. соответствие принимаемых решений условиям охраны окружающей среды.

При этом должны рассматриваться в комплексе внешнее и внутреннее электроснабжение с учетом возможностей и экономической целесообразности технологического резервирования.

При решении вопросов резервирования следует учитывать перегрузочную способность элементов электроустановок, а также наличие резерва в технологическом оборудовании.

1.2.12. При решении вопросов развития систем электроснабжения следует учитывать ремонтные, аварийные и послеаварийные режимы.

1.2.13. При выборе независимых взаимно резервирующих источников питания, являющихся объектами энергосистемы, следует учитывать вероятность одновременного зависимого кратковременного снижения или полного исчезновения напряжения на время действия релейной защиты и автоматики при повреждениях в электрической части энергосистемы, а также одновременного длительного исчезновения напряжения на этих источниках питания при тяжелых системных авариях.

1.2.14. Требования 1.2.11-1.2.13 должны быть учтены на всех промежуточных этапах развития энергосистем и систем электроснабжения.

1.2.15. Проектирование электрических сетей должно осуществляться с учетом вида их обслуживания (постоянное дежурство, дежурство на дому, выездные бригады и др.).

1.2.16. Работа электрических сетей напряжением 2-35 кВ может предусматриваться как с изолированной нейтралью, так и с нейтралью, заземленной через дугогасящий реактор или резистор.

Компенсация емкостного тока замыкания на землю должна применяться при значениях этого тока в нормальных режимах:

  • в сетях напряжением 3-20 кВ, имеющих железобетонные и металлические опоры на воздушных линиях электропередачи, и во всех сетях напряжением 35 кВ — более 10 А;
  • в сетях, не имеющих железобетонных и металлических опор на воздушных линиях электропередачи:
    • более 30 А при напряжении 3-6 кВ;
    • более 20 А при напряжении 10 кВ;
    • более 15 А при напряжении 15-20 кВ;

в схемах генераторного напряжения 6-20 кВ блоков генератор-трансформатор – более 5А.

При токах замыкания на землю более 50 А рекомендуется применение не менее двух заземляющих реакторов.

Работа электрических сетей напряжением 110 кВ может предусматриваться как с глухозаземленной, так и с эффективно заземленной нейтралью.

Электрические сети напряжением 220 кВ и выше должны работать только с глухозаземленной нейтралью.

Как сделать контур заземления?

Для организации правильного заземления вам потребуется:

  • провод сечением не менее 4 мм
  • конструкция треугольника

Для заземления треугольником, в качестве вертикальных электродов заземления можно использовать металлические стержни, трубки или уголки. Их следует расположить в вершинах равностороннего треугольника со сторонами 1,5-3 м и соединить между собой горизонтальным проводником (стальной полосой и т.п.). Для соединения самих проводников между собой и крепления их к электродам рекомендуется использовать сварку.

Ещё один важный аспект – при выборе материала электродов обязательно следует учитывать ограничения в виде наименьших размеров заземлителя для различных типов материалов. Обратитесь к главе 1.7.4 правил устройства электроустановок, для лучшего понимания данного вопроса.

Следующий фактор эффективного заземления, это глубина погружения электродов. Она напрямую зависит от диаметра электрода. Например, электроды диаметром 12 мм забиваются на глубину до 6 метров, электроды до 20 мм погружаются на глубину до 10 метров и т.д.

Популярные статьи  Что такое инверторный генератор и как он применяется?

Для наиболее эффективного заземления нередко при погружении электродов используется соль, которая помогает уменьшить сопротивление заземляющего контура, которое, для нормального функционирования станка, не должно превышать 5 Ом. Более подробные технические условия и требования, а также точную информацию о том, >как правильно сделать контур заземления можно найти в ПУЭ (правил устройства электроустановок) и ПТЭЭП (правила технической эксплуатации электроустановок потребителей).

P.S. Как не стоит организовывать заземление корпуса.

В чем опасность?

Наведенное напряжение имеет не меньшую опасность, чем обычный потенциал. Если при КЗ проводника работает релейная защита и отсекает аварийный участок, в случае с наведенным U все сложнее. Здесь защитные устройства не сработают, поэтому человек может оказаться под длительным воздействием негативных факторов.

При КЗ на рабочей линии, которая находится возле отключенного участка, на обесточенной ВЛ наведенное напряжение увеличивается в несколько раз. В результате ремонтный персонал оказывается под действием наведенного U, что может привести к ожогам и даже остановке сердца. Величина параметра может достигать 10-20 тысяч Вольт.

Пониженное напряжение в конечных электрических цепях электроустановки здания

В ПУЭ прописано, что U выше 25 В уже опасно для здоровья человека

Вот почему важно внимательно подходить к этому обстоятельству и принимать меры, обеспечивающие дополнительную защиту. Как защититься от проводки, будет рассмотрено ниже в статье

В чем разница между заземлением и занулением

Классы и особенности электросетей

Пониженное напряжение в конечных электрических цепях электроустановки здания

Чтобы понять, какими бывают электрические сети, следует подробно разобрать вопрос их классификации. Существуют различные виды систем, которые отличаются между собой направленностью, функциональностью и техническими характеристиками. Каждая система может иметь как достоинства, так и недостатки, о которых должны помнить проектировщики и монтажники.

Говоря о классах и видах электрических систем, в первую очередь следует коснуться разделения электроустановок по уровню напряжения. Каждая установка имеет определенную мощность, а потому все системы разделяются на две группы: сети напряжением менее 1000 В и системы более высокого напряжения.

Помимо этих групп, по классу мощности иногда выделяют и третью категорию электрических установок – самые маломощные системы, мощность которых составляет менее 1 Вт.

Уровень напряжения и мощность электрической системы влияет на ее характеристики и условия эксплуатации. Наиболее мощные установки принято использовать на крупных объектах, к примеру на производстве. Системы меньшей мощности используются для решения других задач, потому применяются в быту и отличаются гораздо большей экономичностью.

Все действующие электрические системы можно разделить также по их назначению. По назначению выделяют несколько групп электрических установок:

  1. Силовые установки, отличающиеся высокой мощностью и отличной функциональностью. Применяются на производстве и в других условиях, когда требуется обеспечить электрическое питание большому числу мощных потребителей. Такие системы часто применяются в случаях, когда в проекте предусмотрено использование электричества для работы других инженерных систем.
  2. Преобразовательные электрические установки предназначены для изменения свойств электрического тока, они превращают ток из переменного в постоянный.
  3. Электрооперационные установки предназначены для совершения каких-либо действий с током в сети. Такие системы, к примеру, могут обеспечивать нагрев с помощью индукции или дуги.
  4. Электросварочные установки – специальное оборудование, предназначенное для соединения металлов (для сварки).
  5. Осветительные системы включают в себя оборудование, обеспечивающее искусственное освещение внутри и снаружи объектов различной направленности.

В зависимости от задач, которые электрическая установка будет решать, для нее выбирают специальное оборудование и материалы. Если такими работами будут заниматься опытные и профессиональные специалисты, то они смогут подобрать технические средства для максимально функциональной работы установки

В проекте электрики важно использовать правильные обозначения проектных документов

Еще одним фактором разбиения электрических установок на классы выступает безопасность размещения оборудования. По безопасности размещения электрических систем установки можно разделить на следующие типы:

  • открытые установки, которые могут располагаться снаружи помещений и должны обладать надежной защитой от внешних влияний окружающей среды;
  • электроустановки, устанавливаемые под навесом, обеспечивающим не самую лучшую защиту от внешних воздействий.
  • полностью закрытые установки, предназначенные для монтажа внутри помещений.

1.7.73

Сверхнизкое (малое) напряжение (СНН) в
электроустановках напряжением до 1 кВ может быть применено для защиты от
поражения электрическим током при прямом и/или косвенном прикосновениях в
сочетании с защитным электрическим разделением цепей или в сочетании с
автоматическим отключением питания.

В качестве источника питания цепей СНН в обоих случаях
следует применять безопасный разделительный трансформатор в соответствии с ГОСТ
«Трансформаторы
разделительные и безопасные разделительные трансформаторы» или другой источник СНН, обеспечивающий
равноценную степень безопасности.

Токоведущие части цепей СНН должны быть электрически
отделены от других цепей так, чтобы обеспечивалось электрическое разделение,
равноценное разделению между первичной и вторичной обмотками разделительного
трансформатора.

Проводники цепей СНН, как правило, должны быть проложены
отдельно от проводников более высоких напряжений и защитных проводников, либо
отделены от них заземленным металлическим экраном (оболочкой), либо заключены в
неметаллическую оболочку дополнительно к основной изоляции.

Вилки и розетки штепсельных соединителей в цепях СНН не
должны допускать подключение к розеткам и вилкам других напряжений.

Штепсельные розетки должны быть без защитного контакта.

При значениях СНН выше 25 В переменного или 60 В
постоянного тока должна быть также выполнена защита от прямого прикосновения
при помощи ограждений или оболочек или изоляции, соответствующей испытательному
напряжению 500 В переменного тока в течение 1 мин.

1.7.55

Для заземления в электроустановках разных
назначений и напряжений, территориально сближенных, следует, как правило,
применять одно общее заземляющее устройство.

Заземляющее устройство, используемое для заземления
электроустановок одного или разных назначений и напряжений, должно
удовлетворять всем требованиям, предъявляемым к заземлению этих
электроустановок: защиты людей от поражения электрическим током при повреждении
изоляции, условиям режимов работы сетей, защиты электрооборудования от
перенапряжения и т.д. в течение всего периода эксплуатации.

В первую очередь должны быть соблюдены требования,
предъявляемые к защитному заземлению.

Заземляющие устройства защитного заземления
электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих
зданий и сооружений, как правило, должны быть общими.

При выполнении отдельного (независимого) заземлителя для
рабочего заземления по условиям работы информационного или другого
чувствительного к воздействию помех оборудования должны быть приняты
специальные меры защиты от поражения электрическим током, исключающие
одновременное прикосновение к частям, которые могут оказаться под опасной
разностью потенциалов при повреждении изоляции.

Для объединения заземляющих устройств разных
электроустановок в одно общее заземляющее устройство могут быть использованы
естественные и искусственные заземляющие проводники. Их число должно быть не
менее двух.

1.7.85

Защитное электрическое разделение цепей следует
применять, как правило, для одной цепи.

Наибольшее рабочее напряжение отделяемой цепи не должно
превышать 500 В.

Питание отделяемой цепи должно быть выполнено от
разделительного трансформатора, соответствующего ГОСТ 30030 «Трансформаторы разделительные и безопасные
разделительные трансформаторы», или от
другого источника, обеспечивающего равноценную степень безопасности.

Токоведущие части цепи, питающейся от разделительного тpaнсформатора,
не должны иметь соединений с заземленными частями и защитными проводниками
других цепей.

Проводники цепей, питающихся от разделительного
трансфоматора, рекомендуется прокладывать отдельно от других цепей. Если это
невозможно, то для таких цепей необходимо использовать кабели без металлической
оболочки, брони, экрана или изолированные провода, проложенные в изоляционных
трубах, коробах и каналах при условии, что номинальное напряжение этих кабелей
и проводов соответствует наибольшему напряжению совместно проложенных цепей, а
каждая цепь защищена от сверхтоков.

Популярные статьи  Можно ли подключить люстру и точечные светильники к двухклавишному выключателю?

Если от разделительного трансформатора питается только один
электроприемник, то его открытые проводящие части не должны быть присоединены
ни к защитному проводнику, ни к открытым проводящим частям других цепей.

Допускается питание нескольких электроприемников от одного
разделительного трансформатора при одновременном выполнении следующих условий:

1) открытые проводящие части отделяемой цепи не должны
иметь электрической связи с металлическим корпусом источника питания;

2) открытые проводящие части отделяемой цепи должны быть
соединены между собой изолированными незаземленными проводниками местной
системы уравнивания потенциалов, не имеющей соединений с защитными проводниками
и открытыми проводящими частями других цепей;

3) все штепсельные розетки должны иметь защитный контакт,
присоединенный к местной незаземленной системе уравнивания потенциалов;

4) все гибкие кабели, за исключением питающих оборудование
класса II, должны иметь защитный проводник, применяемый в качестве проводника
уравнивания потенциалов;

5) время отключения устройством защиты при двухфазном
замыкании на открытые проводящие части не должно превышать время, указанное в
табл.1.7.2.

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации

Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Пониженное напряжение в конечных электрических цепях электроустановки здания
Падение напряжения на резисторе

На что влияет классификация помещений?

Ну вот как выполняется классификация помещений по степени поражения электрическим током мы разобрались. Осталось понять, а зачем она собственно говоря нужна и на что влияет? А нужна она и влияет на типы электроустановок и способ их монтажа в таких помещениях.

С этим вопросом мы и разберемся в этом разделе нашей статьи:

Требования к применению электроинструмента в помещениях различных классов

В первую очередь класс помещения влияет на электрооборудование, которое здесь устанавливается. Это и система освещения, и стационарное электрооборудование, и передвижные электроустановки. Но давайте обо всем по порядку.

Схема подключения разделительного трансформатора

Начнем с системы освещения. В опасных и особо опасных помещениях согласно п.6.1.16 ПУЭ должны применяться светильники с напряжением питающей сети не выше 50В. В качестве исключения допускается применять светильники на напряжение до 220В. Но в таком случае каждый светильник должен питаться от собственного разделительного трансформатора, что весьма неудобно, да и цена такой сети будет заоблачной. Поэтому в последней редакции ПУЭ разрешили питание таких светильников через автомат УЗО на ток утечки не более 30мА.

Автомат УЗО

  • Отдельным вопросом является и исполнение самих светильников. Так для опасных и особо опасных помещений светильники, установленные на высоте до 2,5 метров, должны иметь класс защиты от поражения электрическим током 2 или 3. То есть такой светильник должен иметь двойную или усиленную изоляцию для класса 2 или напряжение не выше 36В переменного тока класса 3.
  • Допускается применять светильники, которые имеют класс защиты от поражения электрическим током 1, если они выполнены через устройство УЗО на ток утечки не выше 30мА. К электрооборудованию перового класса относят электроустановки, которые имеют не усиленную изоляцию и обязательно должны иметь защитное заземление.

Классы защиты электрооборудования от поражения человека электрическим током

Отдельным вопросом является применение переносных светильников в таких помещениях (см. Переносное освещение: каким оно должно быть). Они так же должны быть на напряжение не выше 50В. Но если это тесные или очень хорошо заземленные помещения, то для них должны применяться переносные светильники на напряжение не выше 12В.

Переносной светильник 12В

Особые требования предъявляются и к розеткам, устанавливаемым в опасных и особо опасных помещениях. Они в обязательном порядке должны быть выполнены через автомат защиты УЗО.

Вилки с УЗО

Розетки с УЗО

Учебный фильм по электробезопасности.

Какие помещения относятся к помещениям с повышенной опасностью поражения людей электрическим током?

Варианты ответа

Помещения, характеризующиеся наличием сырости или токопроводящей пыли
Помещения, характеризующиеся наличием металлических, земляных, железобетонных и других токопроводящих полов
Помещения, характеризующиеся наличием высокой температуры
Помещения, характеризующиеся возможностью одновременного прикосновения человека к металлоконструкциям зданий, имеющим соединение с землей, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования (открытым проводящим частям) — с другой
Любое из перечисленных помещений относится к помещениям с повышенной опасностью*

Вопрос 3Какие помещения, согласно ПУЭ, называются сырыми?

Варианты ответа

Помещения, в которых относительная влажность воздуха не превышает 60 %
Помещения, в которых относительная влажность воздуха превышает 75 %*
Помещения, в которых относительная влажность воздуха не превышает 90 %
Помещения, в которых относительная влажность воздуха близка к 100 %

Вопрос 4

Какие помещения, согласно ПУЭ, относятся к влажным?

Варианты ответа

Помещения, в которых относительная влажность воздуха больше 60 %, но не превышает 75 %*
Помещения, в которых относительная влажность воздуха в пределах 80 %
Помещения, в которых относительная влажность воздуха больше 75 %, но не превышает 90 %
Помещения, в которых относительная влажность воздуха близка к 100 %

Вопрос 5

Текст вопроса

Какие помещения, согласно ПУЭ, называются сухими?

Варианты ответа

Помещения, в которых относительная влажность воздуха не превышает 60 %*
Помещения, в которых относительная влажность воздуха не превышает 75 %
Помещения, в которых относительная влажность воздуха не превышает 70 %
Помещения, в которых относительная влажность воздуха близка к 65 %

Вопрос 6

Каким образом должны быть обозначены нулевые рабочие (нейтральные) проводники в электроустановках?

Варианты ответа

Буквой N и голубым цветом*
Буквой N и белым цветом
Буквой Н и голубым цветом
Буквой Н и серым цветом

Вопрос 7

Каким образом обозначаются проводники защитного заземления, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленнойнейтралью?

Варианты ответа

Обозначаются PE и имеют цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины желтого и зеленого цветов *
Обозначаются RE и имеют цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины белого и зеленого цветов
Обозначаются PE и имеют цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины желтого и белого цветов

Вопрос 8

Каким цветом должны быть обозначены шины трехфазного тока?

Варианты ответа

Шины фазы A — зеленым, фазы B — желтым, фазы C — красным цветом
Шины фазы A — зеленым, фазы B — красным, фазы C — желтым цветом
Шины фазы A — желтым, фазы B — зеленым, фазы C — красным цветом *
Шины фазы A — красным, фазы B — зеленым, фазы C — желтым цветом
Популярные статьи  Что такое провод пвс, его расшифровка, конструкция и технические характеристики

Вопрос 9

Как обозначаются шины при переменном однофазном токе?

Варианты ответа

Шина B, присоединенная к концу обмотки источника питания, — красным цветом, шина A, присоединенная к началу обмотки источника питания, — желтым цветом*
Шина B, присоединенная к концу обмотки источника питания, — зеленым цветом, шина A, присоединенная к началу обмотки источника питания, — желтым цветом
Шина А, присоединенная к концу обмотки источника питания, — синим цветом, шина В, присоединенная к началу обмотки источника питания, — зеленым цветом
Шина B, присоединенная к концу обмотки источника питания, — голубым цветом, шина A, присоединенная к началу обмотки источника питания, — зеленым цветом

Вопрос 10

Как обозначаются шины при постоянном токе?

Варианты ответа

Положительная шина (+) — красным цветом, отрицательная (-) — синим и нулевая рабочая M — голубым цветом *
Положительная шина (+) — синим цветом, отрицательная (-) — красным и нулевая рабочая M — голубым цветом
Положительная шина (+) — зеленым цветом, отрицательная (-) — красным и нулевая рабочая M — голубым цветом
Положительная шина (+) — желтым цветом, отрицательная (-) — зеленым и нулевая рабочая M — голубым цветом

Вопрос 11

Чем отличается прямое прикосновение от косвенного?

Определение обоих видов касаний приводится как в ПУЭ (см. п.1.7.11-12). Наглядные примеры обоих прикосновений приведены ниже.

Примеры прикосновений: 1) прямое; 2) косвенное

Как видно из рисунка, прямым типом называется прикосновение к неизолированным тоководам. В большинстве случаев это происходит по причине случайного прикосновения по не внимательности, ошибке или из-за опасного приближения к электроустановкам здания. В данном случае безопасность обеспечивается путем предотвращения случайного касания опасных токоведущих проводников. Для этого предусматриваются специальные технические меры защиты, такие как: установка ограждений, предупреждающих знаков и т.д.

Если рассматривать косвенное прикосновение, то оно происходит только при нештатной ситуации, когда нарушается изоляция токоведущих проводников. Это приводит к образованию фазного потенциала на корпусе установки и образованию опасных зон с током утечки. Для предотвращения прикосновения предусмотрены спецмеры, о которых пойдет речь далее.

Сверхнизкое (малое) напряжение

Применяется в электроустановках напряжением до 1 кВ в качестве защиты от поражения электрическим током при прямом и (или) косвенном прикосновениях, в сочетании с защитным электрическим разделением цепей, или в сочетании с автоматическим отключением питания.

Основные виды электроустановок

Существует 5 основных видов самых распространенных электроустановок:

  1. Силовые установки, оборудование, предназначенное для промышленного назначения. Электроустановки предназначены для компрессорных, вентиляционных, насосных агрегатов и других целей, отличаются постоянством токов нагрузки в самых широких пределах величины мощности. Эти установки отличаются симметричной нагрузкой и равномерно распределенной по всем фазам. Категория надежности этого типа электроустановок – 1.
  2. Установки для преобразования тока переменного в постоянный ток, от частоты, числа фаз, величин напряжения, и для инвертирования. Категория надежности, в основном из недоотпуска энергии относит электроустановки к II категории.
  3. Установки для электротермических операций: дугового действия, индукционного, диэлектрического нагрева, электронно-лучевого и других видов нагрева. Электротермические установки всех видов, за исключением дуговых печей относятся к категории – 2. Дуговые печи относят к категории надежности электропитания — 1.
  4. Установки, применяемые для электросварочных работ. Нагрузка этого вида установок носит неравномерный график, по надежности питания принадлежит к 3 категории надежности.
  5. Электроосветительные установки имеют однофазную нагрузку. Симметричность распределения нагрузки (несимметрия от 5 до 10%) достигается при использовании незначительной мощности электроосветительных приборов, путем равномерного распределения по фазам.

Особенности и классы электроустановок

Электроустановками принято называть любые электрические системы, предназначенные для преобразования, создания или передачи электрического тока. Это крайне широкое понятие, к которому можно отнести самые разные системы и устройства, включая генераторы и даже электрические станции. Действующей электрическая установка становится после того, как хотя бы на одном из ее элементов появляется электрическое напряжение любой величины.

Ток появляется на элементах электрической установки в результате передачи его с других электрических систем или в ходе выработки тока, если речь идет об электрических станциях или генераторах.

Электричество сегодня является неотъемлемой частью современного быта человека. Именно поэтому качественная и функциональная электроустановка требуется не только для крупных производственных объектов, но и для бытовых строений. Чтобы разобраться в отличиях отдельных электрических систем, следует рассмотреть особенности таких сетей. Классификация действующих электроустановок – важный вопрос, в котором обязательно должны разбираться специалисты, занимающиеся проектированием и монтажом электросистем.

Глухое погружение нейтрали

Системы заземления разделяют на две большие группы: с глухо заземленной нейтралью и с изолированной. В схеме первого типа нейтральный проводник (обозначается N) всегда заземлен и может быть независимым от защитного PE-проводника, а может соединяться с ним, образуя PEN-проводник.

Если нейтральный провод объединен с защитным проводником, он образует систему TN-C, если проводиться отдельно − систему TN-S, в случае, когда объединен на подстанции с защитным проводником, а при входе в здание разделяется на два проводника – защитный PE и функциональный N, образуется система TN-C-S. Еще одним видом является система, при которой нейтральный проводник заземляется на подстанции и к потребителю трехфазный ток поступает по четырем проводам, одним из которых является ноль N. Это − система TT.

Применение системы TN-C

Система TN-C широко использовалась ранее при так называемой двухпроводной сети. В этом случае в розетках отсутствовал заземленный контакт. В сетях, сконструированных по этой системе, заземлялся нулевой провод, но при обрыве его, все приборы оставались под напряжением. Это вынуждало заземлять корпуса каждого отдельного электроприбора. В современных строящихся зданиях эта система не проектируется. Используется только в старых зданиях.

Применение системы TN-S

Система TN-S более совершенна, обладает высокой степенью электробезопасности, так как имеет отдельный заземленный проводник, но стоимость ее неоправданно высока. При трехфазном питании приходится прокладывать от источника пять проводов – три фазы, нейтраль и защитный проводник PE.

Для устранения недостатка системы TN-S была создана TN-C-S. Она предусматривает один проводник PEN, который представляет собой общий провод, заземленный по всей длине от источника питания до ввода в здание, а перед вводом разделяется на нейтраль N и защитный проводник PE. Эта система тоже имеет весомый недостаток. При повреждении проводника PEN на протяжении участка от подстанции до здания, все подключенные внутри здания приборы остаются под опасным напряжением. Для этой системы ПУЭ (Правила устройства электроустановок) требуют проведения мероприятий по устройству дополнительной защиты проводника PEN от механических повреждений.

Тип заземления ТТ

Система ТТ используется для подачи электричества за городом и в сельской местности по линиям электропередач, устанавливаемым на опорах. Подключение электроустановок по этой системе разрешается лишь в том случае, если невозможно обеспечить все условия электробезопасности в системе TN и избежать при этом неоправданных материальных затрат. При контакте с электроприборами защита от тока должна осуществляться путем отключения питания в цепи. Для этого правилами предписываются специальные изделия – устройства защитного отключения – УЗО.

Оцените статью
( Пока оценок нет )
Добавить комментарий