Принцип действия плавких предохранителей
Принцип действия одноразовых защитных устройств очень простой. Внутри каждого из них находится калиброванная проволока, соединяющая контакты. Если значение тока не превышает предельно допустимых норм, происходит ее нагрев примерно до 70 градусов. Когда электрический ток превышает установленный номинал, нагрев проволоки существенно увеличивается. При определенной температуре она начинает плавиться, в результате чего происходит разрыв электрической цепи. Перегорание проводка происходит практически мгновенно. Из-за этого предохранители и получили свое название – плавкая вставка.
В разных конструкциях плавкой вставки предохранителя подбирается таким образом, чтобы срабатывание происходило при установленном значении тока. В процессе эксплуатации плавкие предохранители периодически выходят из строя и подлежат замене. Как правило их не ремонтируют, однако многие домашние мастера вполне успешно проводят их реставрацию.
Поскольку перегорает лишь сама проволока, а корпус остается целым, необходимо заменить ее и устройство продолжит выполнять свои функции. Новые технические характеристики зачастую не только не уступают старому прибору, но и во многом превосходят его, поскольку качество ручной сборки всегда выше заводской. Основным условием является правильный выбор материала проводника и расчет его сечения.
Предохранители на электронных компонентах
У этих конструкций функцией защиты электрической схемы занимаются бесконтактные электронные ключи на основе силовых полупроводниковых приборов из диодов, транзисторов или тиристоров. Их называют электронными предохранителями (ЭП) или модулями контроля и коммутации тока (МККТ).
В качестве примера на видео ниже рассказывается принцип работы предохранителя на транзисторах.
Такие электронные предохранители отличаются быстродействием, их время срабатывания не превышает 30 миллисекунд.
Рассмотренная выше схема считается простой, она может быть значительно расширена новыми дополнительными функциями:
У таких схем используемые модули МККТ по времени срабатывания делятся на 4 группы. Самые быстродействующие устройства относят к классу «0». Они отключают превышающие уставку токи на 50% за время до 5 мс, на 300% — за 1,5 мс, на 400% — за 10мкс.
Расчет диаметра проволоки предохранителя
В случае если необходим предохранитель на ток, не указанный в таблице выше, можно воспользоваться формулой для расчета диаметра медной проволоки в зависимости от номинального тока предохранителя.
Для малых токов (при использовании тонкой проволоки диаметром от 0,02 до 0,2 мм) формула имеет следующий вид:
d = Iпл · k + 0,005
Для больших токов (при использовании проволоки диаметром более 0,2 мм) формула такая:
Где Iпл – ток плавкой вставки в амперах, к и m коэффициенты, зависящие от материала проводника, могут быть определены по следующей таблице.
Материал проволоки | Коэффициенты | |
k | m | |
Медь | 0,034 | 80 |
Алюминий | — | 59,2 |
Железо | 0,127 | 24,6 |
Олово | — | 12,8 |
Принцип действия плавких предохранителей
Принцип действия одноразовых защитных устройств очень простой. Внутри каждого из них находится калиброванная проволока, соединяющая контакты. Если значение тока не превышает предельно допустимых норм, происходит ее нагрев примерно до 70 градусов. Когда электрический ток превышает установленный номинал, нагрев проволоки существенно увеличивается. При определенной температуре она начинает плавиться, в результате чего происходит разрыв электрической цепи. Перегорание проводка происходит практически мгновенно. Из-за этого предохранители и получили свое название – плавкая вставка.
В разных конструкциях плавкой вставки предохранителя подбирается таким образом, чтобы срабатывание происходило при установленном значении тока. В процессе эксплуатации плавкие предохранители периодически выходят из строя и подлежат замене. Как правило их не ремонтируют, однако многие домашние мастера вполне успешно проводят их реставрацию.
Поскольку перегорает лишь сама проволока, а корпус остается целым, необходимо заменить ее и устройство продолжит выполнять свои функции. Новые технические характеристики зачастую не только не уступают старому прибору, но и во многом превосходят его, поскольку качество ручной сборки всегда выше заводской. Основным условием является правильный выбор материала проводника и расчет его сечения.
Принцип действия
Базовая особенность предохранителя состоит в том, что его сгорание в электрической цепи происходит гораздо раньше, нежели других элементов. В случае скачка тока электрической цепи, предохранитель гораздо легче и быстрее заменить, нежели менять токоведущие провода, микросхемы и т.п.
Название плавкий данный элемент получил, поскольку основным элементом его конструкции является плавкая вставка. Этот компонент имеет низкую величину температуры плавления, по закону Джоуля-Ленца при прохождении тока через проводник в нем выделяется тепловая энергия, и предохранитель при высокой величине тока, являющейся опасной для остальных компонентов, сгорает. Это приводит к размыканию электрической цепи. Таким образом, предохранитель защищает от повреждения остальные элементы электрической схемы.
Режимы работы плавкого предохранителя:
- Короткое замыкание:
- Перегрузки:
- Нормальны режим. Нагревание устройства, является установившимся процессом, в котором:
- Происходит полный нагрев до конкретной температуры и отдача количества выделенной теплоты;
- Каждый предохранитель имеет обозначение с номинальным значением тока;
- Необходим выбор плавящегося элемента с определенным током номинального режима.
При выборе необходимого предохранителя, нужно руководствоваться не только показанием величины тока, указанной на корпусе. Но также допустимое рабочее напряжение и времятоковую характеристику.
Времятоковая характеристика необходима для показания величины изменения времени полного разрыва цепи при подаче тока определенного значения.
Типы и расшифровка маркировки плавких предохранителей
Плавкий предохранитель — компонент силовой электроники одноразового действия, выполняющий защитную функцию. Плавкий предохранитель является самым слабым участком защищаемой электрической цепи, срабатывающим в аварийном режиме, тем самым разрывая цепь и предотвращая последующее разрушение более ценных элементов электрической цепи высокой температурой, вызванной чрезмерными значениями силы тока.
В электрической цепи плавкий предохранитель является слабым участком электрической цепи, сгорающий в аварийном режиме, тем самым разрывая цепь и предотвращая последующее разрушение высокой температурой.
Плавкие предохранители делятся на следующие типы:
1. слаботочные вставки (для защиты небольших электроприборов до 6 ампер)
- 3х15 (первая цифра означает внешний диаметр, вторая — длину вставки)
- 4х15
- 5×20
- 6×32
- 7х15
- 10х30
2. вилочные (для защиты электрических цепей автомобилей)
3. пробковые (встречаются в жилом секторе, до 63 ампер)
- DIAZED (самые распространённые в СССР)
- NEOZED
4. ножевые (до 1250 ампер)
- типоразмер 000 (до 100 ампер)
- типоразмер 00 (до 160 ампер)
- типоразмер 0 (до 250 ампер)
- типоразмер 1 (до 355 ампер)
- типоразмер 2 (до 500 ампер)
- типоразмер 3 (до 800 ампер)
- типоразмер 4а (до 1250 ампер)
Так же плавкие предохранители различаются по характеристике срабатывания относительно номинального тока. Из-за инертности срабатывания плавких предохранителей, в профессиональной среде электриков они довольно часто используются в качестве селективной защиты в паре с автоматическими выключателями. Селективности между самими плавкими вставками добиваются соотношением 1:1,6 , время-токовая характеристика плавких предохранителей устанавливается зависимостью соответственно I²t ; ПУЭ регулирует защиту воздушных проводящих линий таким образом, чтобы предохранитель срабатывал за 15 секунд (ток короткого замыкания в конце линии должен быть равен трём номинальным токам предохранителя). Существенной величиной является время, за которое происходит разрушение проводника при превышении установленного тока. С целью уменьшения этого времени некоторые плавкие предохранители содержат пружину предварительного натяжения. Эта пружина также разводит концы разрушенного проводника, предотвращая возникновение дуги.
Конструкция плавкого предохранителя
40-амперные предохранители с характеристикой срабатывания “gG”, равносильные советской характеристике “ППН”
- плавкая вставка — элемент содержащий разрывную часть электрической цепи (например проволоку, перегорающую при превышении определённого уровня тока)
- механизм крепления плавкой вставки к контактам, обеспечивающим включение предохранителя в электрическую цепь и монтаж предохранителя в целом.
Корпуса плавких предохранителей обычно изготавливаются из высокопрочных сортов специальной керамики (фарфор, стеатит или корундо-муллитовая керамика). Для корпусов предохранителей с малыми номинальными токами используются специальные стекла. Корпус плавкой вставки обычно выполняет роль базовой детали, на которой укреплен плавкий элемент с контактами плавкой вставки, указатель срабатывания, свободные контакты, устройства для оперирования плавкой вставкой и табличка с номинальными данными. Одновременно корпус выполняет функции камеры гашения электрической дуги.
Маркировка плавких предохранителей
Первая буква означает диапазон защиты:
- a — частичный диапазон (только защита от токов короткого замыкания)
- g — полный диапазон (защита и от токов короткого замыкания, и от перегрузки)
- h — высокая разбивная способность (трубки сделаны из белой или серой керамики)
Вторая буква означает тип защищаемого оборудования:
- G — универсальный предохранитель для защиты различных типов оборудования: кабелей, электродвигателей, трансформаторов
- L — защита кабелей и распределительных устройств
- B — защита горного оборудования
- F — защита маломощных цепей
- M — защита цепей электродвигателей и отключающих устройств
- R — защита полупроводников
- S — быстрое сгорание при коротком замыкании и среднее время сгорания при перегрузке
- Tr — защита трансформаторов
Вы должны быть разборчивы
Скажем, ваша схема включает в себя чувствительный компонент, который точно будет поврежден, если через него пойдет ток более 1 ампера. В нормальных условиях схема никогда не должна потреблять более 500 мА, поэтому вы включаете предохранитель с номиналом 900 мА. Это достаточно высоко, чтобы предотвратить ложное срабатывание, и достаточно низко, чтобы гарантировать, что через чувствительный компонент никогда не пойдет ток 1 ампер. Правильно?
Нет. Рассмотрим следующую спецификацию для предохранителей Panasonic, упомянутых в статье ранее:
Ток срабатывания / время срабатывания (при 25°C) |
Номинальный ток x 100% / 4 часа мин. |
---|---|
Номинальный ток x 200% / 5 секунд макс. | |
Номинальный ток x 300% / 0,2 секунды макс. |
Мы уже обсуждали тот факт, что тепло требует времени для накопления, и в этом случае требует много времени: вам придется ждать не менее четырех часов, чтобы предохранитель отключился, когда ток равен номинальному значению, и даже при удвоенном номинальном токе задержка составляет до 5 секунд. Суть в том, что чувствительный компонент может поджариться задолго до того, как предохранитель отключится. Вам придется переосмыслить выбор вашего предохранителя или (и это, вероятно, более практичное решение в такой ситуации, как описанная выше) реализовать другой метод работы по защите от больших токов.
Кварцевые предохранители
Кварцевые предохранители изготовляют для напряжений 6, 10 и 35 кВ для внутренней и наружной установки. Они относятся к группе токоограничивающих предохранителей. Патрон предохранителя типа ПКТ для напряжений 3-35 кВ (рис.4) представляет собой фарфоровую или стеклянную трубку 1, плотно закрытую металлическими колпачками 2. Внутри трубки помещена плавкая вставка 3 в виде одной или нескольких параллельно включенных тонких медных проволок. В нижнем колпачке предусмотрен указатель срабатывания предохранителя 4. Патрон заполнен мелким кварцевым песком.
Длина проволок и, следовательно, длина патрона определяются номинальным напряжением. Поскольку градиент восстанавливающейся электрической прочности промежутка в кварцевом песке относительно невелик, длина проволоки должна быть велика. Чтобы поместить ее в патроне, приходится навивать проволоку винтообразно.
Характеристики тугоплавких вставок из меди (температура плавления 1080°С) могут быть улучшены напайкой капель олова или свинца, температура плавления которых значительно ниже (соответственно 200 и 327°С). При расплавлении металла напайки он растворяет в себе медь, вследствие чего вставка быстро разрушается при температуре значительно более низкой, чем температура плавления основного материала вставки.
Свойства материала, наполняющего патрон токоограничивающего предохранителя, существенно влияет на работу последнего. Наполнитель должен удовлетворять следующим требованиям:
- отводить тепло от плавкой вставки в нормальном рабочем режиме;
- не выделять газа под действием высокой температуры дуги;
- обладать достаточной электрической прочностью после разрыва цепи.
Как показал опыт, этим требованиям в наибольшей мере отвечает кварцевый песок. Процесс отключения цепи токоограничивающим предохранителем при КЗ протекает следующим образом. При большом токе тонкая проволока плавится и испаряется в течение долей полупериода почти одновременно по всей длине. Зажигается дуга. Вследствие высокой температуры газа в канале дуги образуется местное давление (давление в патроне практически не повышается). Ионизованные частички металла выбрасываются в радиальном направлении в зазоры между песчинками кварца. Здесь они быстро охлаждаются и деионизуются.
Как видно из осциллограммы, напряжение у зажимов предохранителя превышает напряжение сети вследствие появления ЭДС самоиндукции, направленной согласно с напряжением сети. Коммутационные перенапряжения, возникающие при отключении цепи плавкими предохранителями, не должны превышать следующих значений:
Номинальное напряжение, кВ……3..6..10..20..35
Наибольшее допустимое перенапряжение по отношению к земле, кВ……16..26..40..82..126
Плавкие предохранители с корпусом из стекла и керамики
Для ограничения перенапряжения принимают различные меры: применяют вставки ступенчатого сечения по длине, что затягивает процесс их плавления и удлинения дуги; параллельно основным рабочим вставкам включают вспомогательные вставки с искровым промежутком. В последнем случае при расплавлении рабочих вставок и резком повышении напряжения пробивается искровой промежуток вспомогательной вставки, которая также сгорает. Максимальное напряжение при этом уменьшается.
Основные причины
Как проверить диод мультиметром
На плечи каждого предохранителя возлагается ответственность за стабильную работу определённых электроцепей. Если легкоплавкий элемент расплавился, то произошла какая-то неисправность. Иногда такие ситуации единичные, то есть после замены предохранителя проблема больше не повторяется. Но зачастую это превращается в тенденцию.
Специалисты выделяют несколько основных причин, почему в машине горят защитные предохранители. Если разобраться в причине и найти источник неприятностей, удастся вернуть машину к нормальному режиму работы.
- плохое соединение. Не исключено, что при установке или в процессе эксплуатации по неровным дорогам нарушилось качество контакта между предохранителем и колодкой. Порой всё дело в качестве самих изделий, которые не способны гарантировать плотное соединение. В этой ситуации лучшим решением будет покупка более качественных элементов защиты;
- износ. Бытует довольно распространённое мнение, что при первом же превышении нагрузки на предохранитель он сразу же выходит из строя. Это не совсем соответствует действительности. Когда ситуация критическая и нагрузка действительно огромная, плавкий элемент сразу разрушается, чтобы оборвать цепь. Но когда нагрузка лишь немного превышает норму, плавкая составляющая выходит из строя постепенно. Сечение уменьшается, и в результате через несколько сеансов нагрузки окончательно перегорает. Поскольку предохранители являются расходным материалом, им свойственно выходить из строя без наличия серьёзных проблем в самом автомобиле;
- неправильный выбор по номиналу. У каждого предохранителя есть своё значение номинала. Это сила тока, которую он способен через себя пропустить. Если устанавливается элемент с неправильным значением, он не выдерживает воздействующую на него нагрузку, и быстро выходит из строя;
- резкие скачки напряжения. Если в электроцепи, за которую отвечает предохранитель, возникает резкий скачок, элемент плавится и выходит из строя;
- нарушения в пути следования тока. Каждый предохранитель рассчитан на определённую нагрузку и устанавливается на соответствующую его номиналу электрическую цепь. Если сократить длину цепи, снизится сопротивление, и предохранитель будет пропускать через себя ток с большим значением. На современных авто электроника не рассчитана на перегрузки. Потому в их электроцепи ставят специальные чувствительные защитные элементы. При критических нагрузках они плавятся и разрывают цепь, тем самым защищая оборудование от поломок.
Когда в машине выходят из строя устройства и узлы, зависимые от электричества, перед их ремонтом или заменой рекомендуется сначала проверить состояние предохранителей. Они могли просто перегореть, из-за чего системы перестали работать. Банальная замена элемент позволит восстановить работоспособность.
Плавкие предохранители
Предохранители предназначены для защиты электрических сетей от перегрузок и коротких замыканий. Наибольшее распространение получили плавкие предохранители. Они дешевы и просты по устройству.
Плавкий предохранитель состоит из двух основных частей: корпуса (патрона) из электроизоляционного материала и плавкой вставки. Концы плавкой вставки соединены с клеммами, с помощью которых предохранитель включается в линию последовательно с защищаемым потребителем или участком цепи. Плавкая вставка выбирается с таким расчетом, чтобы она плавилась раньше, чем температура проводов линии достигнет опасного уровня или перегруженный потребитель выйдет из строя.
По конструктивным особенностям различают пластинчатые, патронные, трубочные и пробочные предохранители. Сила тока, на который рассчитана плавкая вставка, указывается на ее корпусе. Оговаривается также максимально допустимое напряжение, при котором может использоваться предохранитель.
Основной характеристикой плавкой вставки является зависимость времени ее перегорания от тока (рис.1). Эта кривая снимается экспериментально: берется партия одинаковых предохранителей, которые последовательно пережигаются при разных токах. Замеряется время, по истечении которого вставка перегорает, и ток, проходящий через вставку. Каждому току соответствует определенное время перегорания вставки. По этим данным и строится временная характеристика.
На этой кривой особо выделяются следующие токи, которые используются для выбора плавких вставок:
Imin — наименьший из токов, расплавляющих вставку (при этом токе вставка еще плавится, но в течение неопределенно продолжительного времени (1-2 ч); при меньших токах вставка уже не расплавляется);
I10 — ток, при котором плавление вставки и отключение сети происходит через 10 с после установления тока;
Iном — номинальный ток вставки, т.е. ток, при котором вставка длительно работает, не нагреваясь выше допустимой температуры.
Токи связаны простым соотношением: Iном =I10 /2,5.
При графическом изображении зависимости времени перегорания вставки от тока по оси абсцисс иногда откладывают не абсолютное значение тока, а отношение тока к его номинальному значению.
Таблица 1 позволяет определить требуемый диаметр плавкой вставки в зависимости от номинального тока. Минимальный ток определяют из приближенного соотношения: Imin =(1,3. 1,5)×Iном .
Диаметр провода, мм
ГОСТ Р 50339.0-92 Низковольтные плавкие предохранители. Общие требования.
ГОСТ Р 50339.1-92 Низковольтные плавкие предохранители. Часть 2. Дополнительные требования к плавким предохранителям промышленного назначения.
ГОСТ Р 50339.2-92 Низковольтные плавкие предохранители. Часть 2-1. Дополнительные требования к плавким предохранителям промышленного назначения. Разделы 1-3.
ГОСТ Р 50339.3-92 Низковольтные плавкие предохранители. Часть 3. Дополнительные требования к плавким предохранителям бытового и аналогичного назначения.
ГОСТ Р 50339.4-92 Низковольтные плавкие предохранители. Часть 4. Дополнительные требования к плавким предохранителям для защиты полупроводниковых устройств.
Преддуговое время — время между появлением тока, достаточного для расплавления плавкого элемента(ов), и моментом возникновения дуги.
Время дуги — время между моментами возникновения и окончательного погасания дуги.
Время отключения — сумма преддугового времени и времени дуги.
Номинальный ток плавкой вставки — значение тока, который плавкая вставка может длительно проводить в установленных условиях без повреждений.
Времятоковая характеристика — кривая зависимости преддугового времени или времени отключения от ожидаемого тока в установленных условиях срабатывания.
Примечание: для времени больше 0,1 с практически можно пренебречь разницей между преддуговым временем и временем отключения.
Условный ток неплавления — установленное значение тока, который плавкая вставка способна пропускать в течение установленного (условного) времени, не расплавляясь.
Условный ток плавления — установленное значение тока, вызывающего срабатывание плавкой вставки в течение установленного (условного) времени.
185.154.22.117 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.
Условия выбора предохранителя
Дата добавления: 2015-07-23 ; ; Нарушение авторских прав
Плавкие предохранители выбирают по следующим условиям:
3.1. По номинальному напряжению. Номинальное напряжение предохранителей Uпp.ном. должно быть, как правило, равно номинальному напряжению электроустановки
3.2. По номинальному току плавкой вставки. Номинальный ток плавкой вставки Iпв.ном. должен быть выбран по следующим условиям:
где: Iр.max. – максимальный рабочий ток сети, защищаемый предохранителем;
Imax. – максимальный ток сети при включении электроприемников, у которых пусковые токи значительно превышают номинальные;
Кн·– коэффициент надежности, принимаемый для линий, питающих лампы накаливания и нагревательные приборы 1,0; люминесцентные лампы – 1,25; лампы ДРЛ – 1,1.
α – коэффициент, зависящий от пускового режима защищаемых электродвигателей и типа плавкого предохранителя.
При защите линии, к которой подключен один двигатель
где Кi – кратность пускового тока двигателя.
При защите предохранителем линии, к которой присоединено несколько приемников:
где Ko – коэффициент одновременности;
– сумма рабочих токов всех приемников за исключением одного, у которого разность между пусковым и номинальным токами наибольшая
Iпуск. – пусковой ток исключенного из суммы двигателя.
При выборе плавких вставок безынерционных предохранителей (ПН, НПН, НПР) для защиты короткозамкнутых электродвигателей с мягкими условиями пуска (длительность пуска 2. 5 с) α = 2,5; с тяжелым режимом пуска α = 1,6; для малоинерционных предохранителей (ПР-2) при легком режиме пуска α = 3,0; при тяжелом α = 2,0; при частых пусках (15 и более в час) двигателей с легким режимом пуска плавкие вставки нужно выбирать как для тяжелого режима.
Предохранители, выбранные по этим условиям, защищают короткозамкнутые двигатели только от коротких замыканий.
Ток плавкой вставки предохранителя ПКТ-10 кВ для защиты трансформаторов выбирается по 3 условиям:
1) при отстройке от рабочего максимального тока
где Кн·= 1,25 – коэффициент надежности;
2) при отстройке от броска тока намагничивания трансформатора при его включении под напряжение
3) при отстройке от кратковременного тока при пуске крупных электродвигателей.
Если эти расчеты не производятся, значения токов плавких вставок выбирается по мощности трансформаторов по табл. 18.8 (при Uс.ном. = 10 кВ).
Sт.ном. кВА |
Iпв.ном., А |
3.3. По селективности защиты.
Для проверки селективности действия плавких предохранителей, а также для согласования их с работой релейной защиты составляют карты селективности. При установке однотипных предохранителей напряжением до 1000 В селективность будет соблюдена, если плавкие вставки каждых двух последовательно включенных предохранителей отличаются не меньше, чем на две ступени по шкале номинальных токов плавких вставок, а предохранителей высокого напряжения с кварцевым заполнителем – на одну ступень. Технические данные предохранителей до 1000 В приводятся в табл. 5.2. и на рис. 5.1, 5.2., с. 28-30 , а выше 1000 В с, 206-210 .
Виды и устройство
В зависимости от решаемых задач классификация предохранителей может быть следующей (рисунок 5):
- ножевые предохранители;
- слаботочные плавкие вставки;
- вилочные предохранители;
- кварцевые;
- пробочного типа
- газогенерирующие.
Рис. 5. Виды плавких предохранителей Существуют также самовосстанавливающиеся предохранители, инерционные и откидывающиеся (рис. 6). Изделия инерционного типа предназначены для защиты электромоторов, которые при запуске создают большие нагрузки. Плавкие элементы нагреваются, но не перегорают. После того, как двигатель запустится, инерционный предохранитель переходит в режим ожидания.
Откидывающиеся вставки применяют в защите линий электропередач. В аварийных ситуациях плавкий элемент размыкает цепь. Под действием высокой температуры вставка удлиняется, в результате чего происходит давление на спусковой механизм, который отбрасывает предохранитель из его гнезда. Таким образом, обеспечивается надёжное отключение аварийного участка.
Рис. 6. Откидывающиеся плавкие предохранители
Устройство самовосстанавливающегося предохранителя отличается от других типов электрических аппаратов. Рабочим элементом изделия является полимер с положительным температурным коэффициентом расширения. Полимер содержит углеродистые включения, которые проводят ток.
При нагревании углеродные связи разрываются, в результате чего растёт электрическое сопротивление. При достижении температуры плавления полимера сопротивление стремится к бесконечности, то есть, цепь размыкается. При остывании возобновляется электропроводность полимера. Предохранитель самовосстанавливается.