Перенапряжения в обмотках трансформаторов

Скачки напряжения. Определения и понятия

Скачки напряжения

Скачками напряжения в повседневной речи принято называть резкое (быстрое) значительное изменение значения напряжения. Как правило, под скачком напряжения понимается быстрое значительное увеличение напряжения. Юридически точного определения понятия «скачок напряжения» у нас не существует. Обычно юристы понимают под «скачком напряжения» отклонения качества поставляемой электроэнергии от требований нормативной документации.

Как правило, в судебной практике речь идет о таких скачках напряжения, которые стали причиной нанесения ущерба.

Четкого определения «скачка напряжения» в нормативной документации тоже не найти. Отраслевая нормативная документация различает следующие отклонения параметров электроснабжения от нормы: отклонения и колебания напряжения, перенапряжение.

Отклонение напряжения

«Отклонение напряжения» — это изменение амплитуды длительностью более 1 минуты. Различают нормально допустимое отклонение напряжения и предельно допустимое отклонение напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

Колебание напряжения

«Колебание напряжения» — это изменение амплитуды длительностью менее 1 минуты. Различают нормально допустимое колебание напряжения и предельно допустимое колебание напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

Перенапряжение

«Перенапряжение» — это значительное по амплитуде увеличение параметров тока. Перенапряжением считается повышение напряжения свыше 242 Вольт. Перенапряжение может проходить с длительностью и менее 1 секунды.

Таким образом, объединяя нормативные определения скачка электрического напряжения и юридическое понимание этого понятия, можно сказать, что скачками могут называться как не очень большие, но длительные изменения значения напряжения, так и кратковременные, но значительные превышения этого параметра. Последние ещё могут называться «импульсными скачками».

С точки зрения физики, важным является общая излишняя энергия, воздействующая на приборы — потребители тока. Именно эта энергия, вызванная скачком в сети, и приводит к нанесению ущерба подключенным электрическим приборам.

Примеры взаимного влияния магнитных цепей разных трансформаторов

Работают параллельно два трансформатора. Один соединен в звезду – треугольник, соединение другого – звезда– звезда. Нейтрали первичных звезд соединены. В этом случае треугольник одного трансформатора дает токи третьей гармоники для обоих трансформаторов, но может ими перегрузиться.

В другом примере параллельно работают трехфазная группа однофазных трансформаторов и трехфазный стержневой трансформатор. Нейтрали обоих трансформаторов соединены. У группы однофазных трансформаторов э. д. с. третьих гармоник значительно выше, чем у трехфазного трансформатора. Под действием разности э. д. с. третьих гармоник трансформаторов в них возникает ток третьей гармоники. Он снижает э. д. с. третьей гармоники однофазных трансформаторов, но повышает их в стержневом трансформаторе.

Работа понижающего трансформатора на практике

Понижающий трансформатор — это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы — это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

Перенапряжения в обмотках трансформаторов

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

Перенапряжения в обмотках трансформаторов

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

Перенапряжения в обмотках трансформаторов

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Виды УЗИП

 УЗИП имеют корпус из негорючего пластика и в большинстве случаев представляют собой разрядники или варисторы самых разных конфигураций. Сегодня ограничители импульсных перенапряжений имеют индикатор выхода из строя. Данные устройства необходимы для создания надежной и эффективной системы внутренней молниезащиты.

Разрядник обычно представляет собой электроприбор (открытого воздушного или закрытого типа) с двумя электродами. На них при увеличении напряжения до определенного значения они пробиваются, тем самым снимая импульс перенапряжения. Варистор является полупроводниковым устройством, имеющим симметричную крутую вольт-амперную характеристику. Принцип его действия заключатся в том, что при достижении на его контактах определенной величины напряжения, он быстро и значительно понижает значение своего сопротивления и пропускает ток.

Ограничители импульсных перенапряжений характеризуются параметрами номинального, импульсного напряжения и временного перенапряжения. В зависимости от мощности импульса, которое УЗИП может рассеять и в соответствии с ГОСТом Р 1992-2002 (МЭК 61643-1-98) выделяют 3 класса ограничителей:

  • I B (амплитуда 25-100 кА; для волны 10/350 мксек) – применяется в распределительных щитках;
  • II C (амплитуда 10-40 кА; для волны 8/20 мкс) — применяется в вводах электропитающих устройств, щитках помещений;
  • III D (амплитуда до 10 кА; для волны 8/20 мкс) – обычно устройства этого класса уже встроены в электроприборы.
Популярные статьи  Удельное электрическое сопротивление земли

Перегрузка трансформатора.

Необходимо проверить нагрузку трансформатора. У трансформаторов с постоянной нагрузкой перегрузку можно установить по амперметрам, у трансформаторов с неравномерным графиком нагрузки – путем снятия суточного графика по току. Следует также иметь в виду, что трансформаторы допускают нормальные перегрузки, зависящие от графика нагрузки, температуры окружающей среды и недогрузки в летнее время. Кроме того, допускаются аварийные перегрузки трансформаторов независимо от предшествующей нагрузки и температуры охлаждающей среды.

Допустимые превышения температуры отдельных частей трансформатора и масла над температурой охлаждающей среды, воздуха или воды не должны превышать нормативных значений. Если указанные мероприятия не дают должного эффекта, необходимо разгрузить трансформатор, включив на параллельную работу еще один трансформатор или отключив менее ответственных потребителей.

Высокая температура трансформаторного помещения. Необходимо измерить температуру воздуха в трансформаторном помещении на расстоянии 1,5–2 м от бака трансформатора на середине его высоты. Если эта температура более чем на 8–10 °С превышает температуру наружного воздуха, необходимо улучшить вентиляцию трансформаторного помещения.

Низкий уровень масла в трансформаторе. В данном случае обнаженная часть обмотки и активной стали сильно перегревается; убедившись в отсутствии течи масла из бака, необходимо долить масло до нормального уровня.

Внутренние повреждения трансформатора: замыкания между витками, фазами; образование короткозамкнутых контуров из-за повреждения изоляции болтов (шпилек), стягивающих активную сталь трансформатора; замыкания между листами активной стали трансформатора.

Все эти недостатки при незначительных короткозамкнутых контурах, несмотря на высокую местную температуру, обычно не всегда дают заметное повышение общей температуры масла, и развитие этих повреждений ведет к быстрому росту температуры масла.

Защита трансформаторов напряжения в сетях 3-35 кВ. Необходимо изменить режим заземления нейтрали

  • феррорезонансные перенапряжения;
  • коммутационные перенапряжения;
  • переходные процессы;
  • смещения нейтрали;
  • наличие постоянной составляющей магнитного потока в ТН при автоколебательных процессах в сети.
  • неблагоприятное сочетание ёмкости электрической сети по отношению к земле и нелинейной индуктивности ТН;
  • короткие замыкания;
  • дуговые замыкания на землю;
  • неполнофазная коммутация;
  • коммутация ненагруженных трансформаторов;
  • обрывы проводов.

Два примера повреждения ТН

  • индуктивное сопротивление насыщения ТН и емкостное сопротивление сети относительно земли одного порядка – ХLms 13000 Ом; Xс 9000 Ом (при расчетах не учитывались параметры остального электрооборудования), что является предпосылкой феррорезонансных перенапряжений;
  • включение и отключение трансформатора ЭТЦН-32000/35 производилось на холостом ходу вакуумными выключателями, что вызывает значительные коммутационные перенапряжения .

Рис. 1 Принципиальная схема и характеристики элементов схемы электроснабжения установки «печь-ковш»Перенапряжения в обмотках трансформаторовРис. 2Принципиальная электрическая схема
RC-цепочки трансформатора
ЭТцН-32000/35Перенапряжения в обмотках трансформаторов
Бороться необходимо с причиной

  • заземление нейтрали обмоток высокого напряжения ТН через резисторы различных значений сопротивлений – от низкоомных до высокоомных;
  • включение резисторов в разомкнутый треугольник обмоток ТН, предназначенных для контроля изоляции сети;
  • включение высокоомных резисторов между питающей сетью и обмотками высокого напряжения ТН;
  • применение антирезонансных ТН типа НАМИ;
  • другие технические решения, например, замена в НАМИ заземляемой электромагнитной фазы емкостным делителем;
  • применение электромагнитных ТН с ненасыщаемой магнитной системой;
  • заземление нейтрали заземляемых ТН через первичную обмотку незаземляемого ТН;
  • заземление нейтрали ТН через первичную обмотку трансформаторов тока (ТТ) с подключенным ко вторичной обмотке ТТ низкоомным резистором.
  • переходные процессы в сети с изолированной нейтралью, содержащей трансформаторы НАМИ-10, могут приводить к глубокому насыщению сердечника фазного ТН;
  • наиболее тяжелым режимом для НАМИ при дуговых замыканиях является режим однополярной дуги, когда зажигание дуги происходит один раз в период промышленной частоты;
  • причинами повреждения трансформаторов НАМИ-10 при длительных дуговых замыканиях в сети с изолированной нейтралью из-за нагрева первичной обмотки фазного трансформатора могут быть:
    • разные напряжения зажигания дуги в положительную и отрицательную полуволну приложенного напряжения,
    • возникновение режима горения дуги с гашением ее на втором периоде вынужденной составляющей тока замыкания на землю в сети с токами замыкания 5 А и более.

Метрология и ТН
Рис. 3Схема защиты ТН 35 кВ
от феррорезонансных перенапряжений,
применяемая в АО «Колэнерго» Перенапряжения в обмотках трансформаторов
НЕ ВСЕ ПРЕДОХРАНИТЕЛИ МОГУТ ЗАЩИТИТЬ ТНТаблица 1. Результаты метрологических
исследований ТН 35 кВ с высокоомными резисторами, включенными между сетью и первичными обмотками ТН

Погрешность Значение сопротивления резистора, включенного на высоковольтный вывод заземляемого ТН, кОм Норма по ГОСТ 1983-2001
15 45
напряжения, % -0,283 -0,802 -1,78 ± 0,5
угловая +9,2′ +22′ +48′ ± 20′

Таблица 2.
Предельно-допустимые
длительные токи ТН 3-35 кВ

Класс напряжения, кВ Предельно-допустимый длительный ток в первичных обмотках ТН, А
3 0,144
6 0,115
10 0,109
35 0,049

Рис. 4
Ампер-секундная характеристика
предохранителя типа ПКН 001 на 10 кВ
Перенапряжения в обмотках трансформаторовРис. 5Ампер-секундная характеристика
предохранителя типа ПКН 001 на 35 кВ
Перенапряжения в обмотках трансформаторовРис. 6Ампер-секундная характеристика встроенного защитного предохранительного устройства трансформаторов ЗНОЛП-6 и ЗНОЛП-10
Перенапряжения в обмотках трансформаторов
Требуется резистивное заземление нейтрали!Выводы Список литературы

Классификация и виды изоляции трансформатора

В трансформаторе различают внутреннюю и внешнюю изоляции.

Внешней называют воздушную изоляцию между вводами обмоток различных напряжений и фаз. К внешней, кроме того, относят воздушную изоляцию между вводами обмоток и наружными элементами конструкции бака — расширителем, патрубками, газовым реле и т. п., а также воздушную изоляцию самих вводов.

Внутренней называют изоляцию токоведущих частей, расположенных в баке трансформатора. К внутренней, кроме того, относят изоляцию отводов и переключателей внутри бака между собой и заземленными частями трансформатора.

Популярные статьи  Импульсный паяльник своими руками

Внутреннюю изоляцию подразделяют на главную и продольную. К главной относят изоляцию обмотки от остова, бака и других заземленных частей, а также от других обмоток, электрически не соединенных с нею. К продольной относят изоляцию между отдельными элементами (витками, катушками) данной обмотки.

Схема классификации изоляции силового трансформатора показана на рисунке 2.

Перенапряжения в обмотках трансформаторов

Рисунок 2 — Схема классификации изоляции силового трансформатора

Внутренняя изоляция масляных трансформаторов может быть твердой (между соседними витками или рядом лежащими изолированными отводами); чисто масляной (между катушками, неизолированными отводами или между токоведущими частями вводов и стенкой бака) и комбинированной, т. е. масляной изоляцией в сочетании с твердой.

Твердая изоляция применяется в виде покрытий, изолирования и барьеров. Покрытием называется сравнительно тонкий (не более 1—2 мм) слой изоляции (бумага, лак), плотно охватывающий проводник. Примером покрытия является витковая изоляция обмоточных проводов.

Изолирование отличается от покрытия большей толщиной слоя изоляции (до десятков миллиметров), что позволяет существенно улучшить распределение электрического ноля вокруг проводника. Примером изолирования может служить бумажная изоляция проводов ПБОТ, широко применяемых для отводов трансформаторов.

Барьерами называют прямые или фасонные перегородки из электрокартона, бумажно-бакелитовых цилиндров или трубок, установленных в масляных промежутках между токоведущими и заземленными частями трансформатора.

Изоляция, состоящая из масляных промежутков, разделенных барьерами, называется маслобарьерной.

Главная изоляция масляных трансформаторов выполняется, как правило, маслобарьерной и состоит из цилиндров, перегородок, угловых и круглых шайб из электрокартона, промежутки между которыми заполнены маслом.

Классификация

Различают несколько типов РПН, отличающихся следующими характеристиками:

  • разновидностью токоограничивающего элемента – с реакторами или резисторами;
  • наличием или отсутствием контактора;
  • количеством фаз – однофазные и трёхфазные;
  • типом токовой коммутации.

Перенапряжения в обмотках трансформаторов
Расшифровка маркировки для РПН типа UBB… В зависимости от способа коммутации тока, существуют следующие разновидности устройств:

  • дуга разрывается в объёме, заполненном трансформаторным маслом – устройство предполагает использование дугогасительных контактов, не требующих применения специальных элементов для гашения дуги;
  • дуга разрывается в разреженном пространстве – предполагают использование вакуумных дугогасительных камер, производимых промышленным способом;
  • отключение производится посредством тиристоров, бездуговым способом;
  • комбинированные способы – с сочетанием различных типов коммутации.

Также читайте: Вредны ли светодиодные лампы для здоровья человека

Перенапряжения в обмотках трансформаторов

Чтобы обеспечить безопасность и функциональность РПН, они снабжаются автоматическими контролирующими элементами и регуляторами напряжения.

Кроме указанных устройств, для изменения характеристик напряжения в мощных агрегатах могут применяться специальные вольтодобавочные трансформаторы. Данное оборудование подключается последовательно и используется вместе с основным агрегатом в качестве вспомогательного. Но указанный способ не получил широкого применения в связи с дороговизной и высокой сложностью схемы.

Что это такое падение напряжения

Говоря упрощенно и что бы было понятнее- это энегрия(причем активная!)  выделяемая в виде тепла.

Приведу пример. Для каждого сечения провода есть максимальный допустимый ток. Если к медному проводу сечением 2,5 кв. мм  подключить однофазный электротел мощностью 9 кВт с потребляемым током 9000:220=41 ампер, то провод очень сильно будет греться.

Материал, из которого изготовлен провод- медь оказывает активное сопротивление электрическому току.

По закону Ома- электрический ток прямо пропорционален изменениям напряжения, поэтому при подключении электрокотла на этом участке провода увеличивается и напряжение и происходит нагрев провода.

Не понятно? Давайте еще подробнее. Допустим сопротивление провода0 1 Ом. Ток как уже определили- 41 ампер.

Тогда на проводе напряжение составит U=R*I= 41 Вольт

Это и есть падение напряжения на проводе. При этом будет выделяться мощность в виде тепла P=U*I=41*41=1681 Ватт

А это целый электрообогреватель мощностью 1,7 кВт!!!

Конечно такая рассеиваемая мощность в проводе приводит к перегреву и плавлению изоляции. Именно поэтому для каждого сечения ток ограничен.

В данном случае для 2,5 кв.мм допустимый ток 25-27 ампер.

Из всего вышесказанного следует:

При увеличении нагрузки- увеличивается ток и увеличивается падение напряжения и  потери энергии в проводах

Другими словами- часть напряжения и энергии до наших розеток просто не доходит, а выделяется в воздух в виде тепла…

А сейчас самое важное!

Что бы компенсировать такие неизбежные потери энергии, на вторичной обмотке силового трансформатора повышают напряжение.

То есть повышают напряжение выше 10 000 Вольт- до 11, а то и больше киловольт. Тогда даже и если часть энергии “теряется” в проводах, у нас в квартирах и домах напряжение находится в пределах нормы- около 220 Вольт.

Устройство анцапфы

Анцапфа трансформатора – это простое устройство в виде виткового соединения, которое сопряжено с переключателем и обмоткой по высокой стороне. Корректировка выполняется в два направления: на повышение (убавление) и на понижение (добавление). Все это характеризуется физическим законом Ом, которое предполагает пропорциональное соотношение сопротивления к уровню напряжения.

Чтобы понять, в каком положении анцапфа трансформатора, необходимо посмотреть на условные обозначения шильды. Каждый шаг предполагает изменение на 2,5% в сторону уменьшения или увеличения. Для поддержания стабильности сопротивления контактов используется пружинное приспособление.

Заметим, что с течением времени сопротивление изоляции может снижаться, поэтому перевод устройства необходимо выполнять не менее 2 раз в год. Раз в год следует осуществлять физические измерения обмоток с использованием мегомметра или других приспособлений службы изоляции.

Что такое анцапфа: определение и назначение

Перенапряжения в обмотках трансформаторов

Анцапфа трансформатора – это переключатель ПБВ, располагающийся на стороне высшего напряжения. Предназначается для корректировки коэффициента трансформации. В простом понимании процесс предполагает изменение числа витков в обмотке, что по физическим законам корректирует величину напряжения.

Подобный элемент позволяет изменять уровень напряжения на +/- 10%. Уровень зависит от мощности силового оборудования, его технических особенностей. Регулировка анцапфы трансформатора 10/0,4 кв осуществляется только при выведенном в ремонт оборудовании (переключение без возбуждения).

Выполнять корректировку в любое удобное время не представляется возможным, так как осуществление операции требует обесточивания абонентов. Именно поэтому на мощных трансформаторах силовых подстанций от 110 кВ и выше используется другое устройство, именуемое РПН.

Регулировка напряжения под нагрузкой считается усовершенствованной анцапфой, которая позволяет изменять количество витков без отключения. Для комфорта соблюдения режимов диспетчерским персоналом, РПН дополняется телемеханикой.

Гудение силовых трансформаторов причины

Причин повышенного гудения трансформатора может быть несколько, и сейчас я рассмотрю самые распространенные из них.

1. Ослабить винты крышки трансформатора, расширителя, выхлопной трубы и т. д.

Для устранения шума отсоедините трансформатор и затяните ослабленные крепежные болты.

2. Высокий уровень питающего напряжения.

В этом случае силовой трансформатор должен быть отключен от сети, а выключатель выключенного устройства РПН должен быть установлен в соответствующее положение.

Предположим, что напряжение в цепи изначально составляло 10,0-10,2 (кВ), а устройство РПН находилось в промежуточном положении (II). Для работы с трансформатором с напряжением питания 10,5 (кВ) или выше устройство РПН должно находиться в положении (I).

Кстати, я рекомендую вам ознакомиться со статьей о конструкции и конструкции переключателя в стойку с переключателем ответвлений вне цепи. Там я наглядно показал, как переключается вращение обмоток силового трансформатора при переключении каскадов.

Если напряжение в сети превышает 11 (кВ), переключение ответвлений произойдет не на нашем трансформаторе 10 / 0,5 (кВ), а на питающем трансформаторе, например, на главной трансформаторной подстанции предприятия или района.

Мы покажем вам видео, как поменять ответвления на трансформаторе ТРДЗН 63 МВА, 110/10 кВ на одной из главных трансформаторных подстанций.

3. неплотная упаковка и соединения магнитопровода.

Если корпус магнитопровода ослаблен, под действием электромагнитного поля некоторые из пластин могут вибрировать с такой частотой, что может быть слышно неравномерным и сильным шумом. В этом случае отнесите трансформатор в ремонт, снимите с него активную часть (если это масляный трансформатор) и затяните все ослабленные зажимные болты блока магнитопровода.

4. Колебания кромочных пластин магнитопровода.

В этом случае необходимо заклинить кромочные пластины магнитопровода, например, электрокартоном.

5. Перегрузка силового трансформатора.

В этом случае необходимо только снизить нагрузку на трансформатор, например, отключив менее важные потребители.

6. Несимметричная нагрузка трансформатора по фазам.

В этом случае нагрузка должна распределяться по отдельным фазам более равномерно.

7 Электрические разряды между обмоткой (или отводами) и корпусом

Между обмоткой и корпусом или между отводами обмотки и корпусом могут возникать различные типы электрических разрядов (не пламенные разряды), сопровождаемые характерным слышимым треском.

Кстати, характерный щелчок можно услышать при ослаблении или обрыве контакта заземления внутри трансформатора, потому что разорванное заземление вызывает разряд на корпусе, который воспринимается как треск внутри трансформатора.

Например, посмотрите мое видео об искровом разряде 10 (кВ) от трансформатора тока.

Для устранения таких разрядов отнесите трансформатор в ремонт с удалением активной части, а затем найдите место, где произошел разряд и его устранение.

Вернемся к нашему примеру.

Достаточно быстро и без отключения трансформатора от сетиможно указать уровень питающего напряжения, работу трансформатора в режиме перегрузки и дисбаланс нагрузки.

Используя амперметр, подключенный к трансформаторам тока данного вывода (соединения выводов), можно определить нагрузку трансформатора тока на стороне 10 (кВ). Как видите, ток нагрузки составляет около 26 (А), что почти вдвое меньше номинального тока трансформатора, равного 57,7 (А), что уже исключает причину перегрузки трансформатора.

На нижней стороне трансформатора, на входе в шину 500 (В), также есть амперметр, показывающий 400 (А), что также исключает перегрузку.

Осталось проверить несимметричность нагрузки. Это можно сделать на стороне низкого напряжения, например, с помощью токоизмерительных клещей на входе в шину 500 (В). На момент посещения подстанции у меня не было при себе клещей, но я могу сказать почти со 100% уверенностью, что в этом силовом трансформаторе нет неравномерности нагрузки, потому что все приемники трехфазные в виде электродвигатели и подключенные к сети напряжением 500 (В), отсутствуют в секции однофазных и двухфазных приемников.

Напряжение питания нашего трансформатора в норме и составляет 10,6 (кВ). Величина питающего напряжения проверялась на РП с помощью киловольтметра, подключенного к трансформаторам напряжения 3хЗНОЛ-06.10 секции сборных шин 10 (кВ), к которым также подключено наше электроснабжение (подключение).

Оцените статью
( Пока оценок нет )
Добавить комментарий