Применение полевых транзисторов
(читать дальше…) :: (в начало статьи)
1 | 2 |
:: ПоискТехника безопасности :: Помощь
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.
Полевой транзистор — силовой ключ Применение полевого транзистора в качестве ключа. Читать дальше…
Применение полевых транзисторов Типичные схемы с полевыми транзисторами. Применение МОП. Читать дальше…
Уважаемый Автор,
мне кажется, в статье перепутаны определения обедненных и обогащенных транзисторов.
р-канальные транзисторы действительно бывают только обогащённого типа (они же с индуцированным каналом они же enhancement-mode). Но они не проводят ток при нулевом напряжении затвора, а отпираются при некотором пороговом отрицательном напряжении на затворе относительно с Читать ответ…
Еще статьи
Мощный полевой транзистор irfp2907. МОП, MOSFET. Свойства, параметры, …
Применение и параметры IRFP2907, мощного полевого транзистора, рассчитанного на …
Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….
Проверка биполярного, полевого транзисторов, МОП, FET, MOSFET. Провери…
Как проверить исправность биполярного и полевого транзисторов. Методика испытани…
Высоковольтный полевой транзистор irfp450. МОП, MOSFET. Свойства, пара…
Применение и параметры IRFP450, высоковольтного полевого транзистора…
Сверхмощный импульсный усилитель звука. Площади. Вещательный. Звуковой…
Сверхмощный импульсный усилитель звука для озвучивания массовых мероприятий и пр…
Поиск, обнаружение разрывов, обрывов проводки. Найти, искать, отыскать…
Детали, сборка и наладка прибора для обнаружения скрытой проводки и ее разрывов…
Повышающий импульсный источник питания. Онлайн расчет. Форма. Подавлен…
Как рассчитать повышающий импульсный преобразователь напряжения. Как подавить пу…
Параллельное, последовательное соединение конденсаторов. Расчет емкост…
Вычисление емкости и напряжения при параллельном и последовательном соединении к…
Расчёт ключевого режима транзисторного каскада
Расчёт ключевого режима транзисторного каскада производится абсолютно так же, как и ранее проведённый расчёт усилительного каскада. Отличие заключается только в том, что ключевой режим предполагает два состояния транзистора в режиме покоя (без сигнала). Он, или закрыт (но не закорочен), или открыт (но не перенасыщен). При этом, рабочие точки «покоя», находятся за пределами точек А и С изображённых на ВАХ. Когда на схеме в состоянии без сигнала транзистор должен быть закрыт, необходимо из ранее изображённой схемы каскада удалить резистор Rб1
. Если же требуется, чтобы транзистор в состоянии покоя был открыт, необходимо в схеме каскада увеличить резисторRб2 в 10 раз от расчётного значения, а в отдельных случаях, его можно удалить из схемы.
Расчёт транзисторного каскада окончен.
Параметры усилителя
- Выходная мощность (RMS): 140 Вт при нагрузке 8 Ом, 200 Вт на 4 Ом.
- Частотный диапазон: 20 Гц — 80 кГц -1dB.
- Входная чувствительность: 800 mV при мощности 200 Вт на 4 Ом.
- Искажения: <0.1% (20 Гц — 20 кГц).
- Соотношение сигнал/шум: > 102dB невзвешенных, 105 дБ (A-взвешенное с учетом 200 Вт на 4 Ом).
На рисунке показана схема одного из самых простых УМЗЧ с применением полевых транзисторов этого типа в выходном каскаде. А мощность его составляет целых 200 ватт! Этот усилитель мощности MOSFET подходит для многих целей, таких как мощный концертный гитарник или домашний кинотеатр. Усилитель имеет хороший диапазон частот — от 1 дБ 20 Гц до 80 кГц. Коэффициент искажений менее 0,1% при полной мощности, а соотношение сигнал/шум лучше, чем -100 dB. Дальнейшее упрощение возможно за счёт применения ОУ в предусилительном каскаде.
Вся конструкция УНЧ размещена в небольшом алюминиевом корпусе. Питается схема от простого двухполярного выпрямителя с тороидальным трансформаторомна 250 ватт
Обратите внимание, что на фото показан моноблок — то есть одноканальный усилитель, так как он собран для электрогитары
Радиатор применён из черного анодированного алюминиевого профиля. Корпус имеет длинну 300 мм и снабжен сзади 80 мм вентилятором охлаждения. Вентилятор работает постоянно, поэтому радиатор всегда прохладный, даже при максимальной мощности (или, по крайней мере, несколько выше температуры окружающей среды).
Маркировка транзисторов в соответствии с европейской системой классификации.
В соответствии с европейской системой классификации обозначение транзистора состоит из двух букв и трех
цифр (приборы общего применения) или трех букв и двух цифр(приборы специального применения).
Первая буква характеризует материал, из которого сделан транзистор:
А-германий; В- кремний. Вторая буква обозначает область применения прибора:
С-маломощный низкочастотный прибор; D-мощный низкочастотный прибор;F- маломощный высокочастотный прибор;
L-мощный высокочастотный прибор.
Третья буква(если она есть) не несет особой смысловой нагрузки.
Например: транзистор AF115 — общего назначения, германиевый,маломощный, высокочастотный.
Транзистор BD135 — общего назначения, большой мощности, низкочастотный.
Драйверы для управления
Так как нет тока в цепи управления, в статическом режиме можно не использовать стандартные схемы. Разумнее применить специальный драйвер – интегральную схему. Многие фирмы выпускают устройства, которые позволяют управлять одиночными силовыми транзисторами, а также мостами и полумостами (трехфазными и двухфазными). Они могут выполнить различные вспомогательные функции – защитить от токовой перегрузки или КЗ, а также от большого падения напряжения в цепи управления мосфет. Что это за цепь, будет рассказано более детально ниже. Стоит заметить, что падение напряжения в цепи управления силовым транзистором – это очень опасное явление. Мощные мосфеты могут перейти в другой режим работы (линейный), вследствие чего выйдут из строя. Кристалл перегревается и транзистор сгорает.
Сравнение IGBT с MOSFET
Структуры обоих транзисторов очень похожи друг на друга. Что касается протекания тока, важным отличием является добавление слоя подложки P-типа под слой подложки N-типа в структуре модуля IGBT. В этом дополнительном слое дырки вводятся в слой с высоким сопротивлением N-типа, создавая избыток носителей. Это увеличение проводимости в N-слое помогает уменьшить общее напряжение во включенном состоянии в IGBT-модуле. К сожалению, это также блокирует поток электроэнергии в обратном направлении. Поэтому в схему добавлен специальный диод, который расположен параллельно с IGBT чтобы проводить ток в противоположном направлении.
Принцип работы полевого транзистора
Говоря простыми словами о том, как работает полевой транзистор для чайников с управляющими p-n переходами, стоит отметить: радиодетали состоят из двух участков: p-переходов и n-переходов. По участку n проходит электроток. Участок р является перекрывающей зоной, неким вентилем. Если оказывать определенное давление на нее, то она будет перекрывать участок и препятствовать прохождению тока. Либо, же наоборот, при снижении давления количество проходящего тока возрастет. В результате такого давления осуществляется увеличение напряжения на контактах затворов, находящихся на участке р.
Приборы с управляющими p-n канальными переходами — это полупроводниковые пластины, имеющие электропроводность с одним из данных типов. К торцевым сторонам пластин выполняется подсоединение контактов: стока и истока, в середину — контакты затвора. Принцип работы прибора основан на изменении пространственных толщин p-n переходов. Так как в запирающих областях практически отсутствуют подвижные носители заряда, их проводимость равняется нулю. В полупроводниковых пластинах, на участках которых не воздействует запирающий слой, создаются проводящие ток каналы. Если подается отрицательное напряжение в отношении истока, на затворе образуется поток, через который протекают носителя заряда.
Для изолированных затворов, характерно расположение на них тонкого слоя диэлектрика. Такое устройство работает по принципу электрических полей. Для его разрушения понадобится всего лишь небольшое электричество. В связи с этим, чтобы предотвратить статическое напряжение, которое может превышать 1000 В, необходимо создание специальных корпусов для приборов, которые минимизируют эффект от воздействия вирусных типов электричества.
Подключение (N-канальный)
Управляющий пин мосфета (затвор) подключается к любому цифровому пину МК через токоограничивающий резистор на 100-200 Ом, что защитит пин от слишком большого тока. Также он подтягивается к GND резистором на 10 кОм, чтобы транзистор автоматически закрылся при отсутствии сигнала с МК. “Плюс” источника питания подключается напрямую к нагрузке, GND соединяется с GND микроконтроллера. GND нагрузки подключается на выход (сток) мосфета:
Рассмотрим возможное подключение мотора из PRO версии набора, питание от внешнего 5V адаптера:
Во время коммутации индуктивной нагрузки (моторы, электромагниты, соленоиды и прочие “катушки”) происходит выброс напряжения, который может повредить транзистор. Для защиты от него мы поставили диод (есть в наборе) параллельно мотору, диод примет весь удар на себя.
Схема полевого транзистора.
Слева изображен n-канальный полевой транзистор и его электроды, а справа, соответственно, его биполярный n-p-n «аналог». Казалось бы, устройства практически полностью идентичны друг другу — в чем же разница? Переходим к детальному анализу.
Само название ПТ нам говорит о том, что его работой управляет электрическое поле, которое создается приложенным к затвору напряжением (как вы помните, в БТ выходной ток управлялся током базы). В случае же полевого транзистора через затвор и вовсе не течет никакой ток, и в этом то, пожалуй, и заключается главная особенность этого устройства. Давайте разберемся чуть подробнее. Ток затвора отсутствует, следовательно, полное входное сопротивление транзистора невероятно велико (действительно, R = \frac{U}{I}, а I, то есть ток, у нас стремится к нулю). И это свойство полевика имеет огромное значение.
Из всего этого следует, что полевой транзистор нельзя рассматривать как устройство, усиливающее ток, поскольку на входе тока, как мы выяснили, нет совсем. Давайте рассмотрим, как же он работает.
Итак, напоминаю, что мы остановили свой выбор на рассмотрении n-канального полевого транзистора. Когда это устройство работает в нормальном режиме сток имеет положительный потенциал относительно истока (для p-канального, естественно, все наоборот). Ток же от стока и истоку не будет протекать до тех пор, пока к затвору не будет приложено положительное относительно истока напряжение. То есть как только мы подаем на затвор напряжение, превышающее потенциал истока, от стока к истоку начинает протекать ток. Меняя напряжение U_{зи}(напряжение затвор-исток) мы можем управлять величиной этого тока.
Давайте для лучшего понимания посмотрим на выходные характеристики (зависимость тока стока от напряжения сток-исток):
Видим, что при напряжениях сток-исток выше 1-2 В, ток стока остается практически неизменным. Эта область характеристик ПТ называется областью насыщения. С большой точностью полевой транзистор позволяет получить неизменный ток стока при постоянном значении напряжения затвор-исток. Как видим из графика — чем больше значение U_{зи}, тем больше становится величина тока стока. Кроме того, можно сказать, что ток стока прямо пропорционален квадрату разности напряжений (U_{зи}-U_{п}). Здесь U_{п} — это пороговое напряжение. Что это такое? А это такое напряжение затвора, при котором начинает протекать ток стока. Для данного графика пороговое значение напряжение затвор-исток составляет примерно 1.6 В.
Виды полевых транзисторов
В семействе МОП полевых транзисторов в основном выделяют 4 вида:
1) N-канальный с индуцированным каналом
2) P-канальный с индуцированным каналом
3) N-канальный со встроенным каналом
4) P-канальный со встроенным каналом
Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом — сплошной.
В современном мире полевой транзистор со встроенным каналом используется все реже и реже, поэтому, в наших статьям мы их не будем рассматривать. Будем изучать только N и P — канальные полевые транзисторы с индуцированным каналом.
Как применять полевой транзистор для чайников
Первыми приборами, которые поступили на рынок для реализации, и в которых были использованы полевые транзисторы с управляющими p-n переходами, были слуховые аппараты. Их изобретение состоялось еще в пятидесятые годы XX века. В более крупным масштабах они применялись, как элементы для телефонных станций.
В наше время, применение подобных устройств можно увидеть во многих видах электротехники. При наличии маленьких размеров и большому перечню характеристик, полевые транзисторы встречаются в кухонных приборах (тостерах, чайниках, микроволновках), в устройстве компьютерной, аудио и видео техники и прочих электроприборах. Они используются для сигнализационных систем охраны пожарной безопасности.
На промышленных предприятиях транзисторное оборудование применяют для регуляции мощности на станках. В сфере транспорта их устанавливают в поезда и локомотивы, в системы впрыскивания топлива на личных авто. В жилищно-коммунальной сфере транзисторы позволяют следить за диспетчеризацией и системами управления уличного освещения.
Также самая востребованная область, в которой применяются транзисторы – изготовление комплектующих, используемых в процессорах. Устройство каждого процессора предусматривает множественные миниатюрные радиодетали, которые при повышении частоты более чем на 1,5 ГГц, нуждаются в усиленном потреблении энергии. В связи с этими разработчики процессорной техники решил создавать многоядерные оборудования, а не увеличивать тактовую частоту.
Ключ на полевом транзисторе.
Теперь давайте рассмотрим небольшой пример. Разберемся, как работает схема ключа:
Схема проста до безобразия, кроме самого ПТ в ней практически ничего нет ) Резистор здесь условно изображает нагрузку, пусть она рассчитана на потребление тока 100 мА и напряжение 5В. При таком положении переключателя, как на рисунке, потенциал затвора равен потенциалу земли и равен потенциалу истока. А это значит, что полевик «выключен» и ток стока отсутствует.
Чтобы «включить» полевой транзистор необходимо, чтобы потенциал затвора превышал потенциал истока, что достигается переключением S1. В этом случае от стока к истоку начинает протекать ток стока, а из-за того, что транзистор имеет сопротивление довольно-таки маленькое по сравнению с нагрузкой, то потенциал стока станет близок к потенциалу земли, а напряжение на нагрузке составит практически 5 вольт. Смотрите сами почему так получается. Сопротивление нагрузки и выходное сопротивление транзистора представляют из себя обычный делитель напряжения, тогда значение напряжения на нагрузке:
U_{H} = \frac{5R_н}{R_н + R_т}
А учитывая, что R_т у нас намного меньше, чем R_н, мы и получаем, что почти все 5 вольт окажутся на нагрузке.
Эта схема очень напоминает ключ на биполярном транзисторе (про него шла речь вот тут — ссылка). Но тут есть очень важный момент. Как вы помните, при проектировании ключа на БТ необходимо заботиться о том, чтобы обеспечить необходимый ток базы, но при этом исключить избыточные затраты энергии. Ключ на ПТ избавляет нас от этих проблем, поскольку через затвор не течет никакого тока. И мы просто подаем на него полное входное напряжение и все.
Думаю, на этом сегодня закончим, а в следующей статье подробно рассмотрим, какие бывают типы полевых транзисторов, и чем они отличаются друг от друга.
Типы МОП-транзистора (MOSFET)
На основе режима эксплуатации МОП-транзисторы можно разделить на два типа.
- Режим насыщения
- Режим истощения
Режим насыщения
В этом режиме отсутствует проводимость при нулевом напряжении, что означает, что оно по умолчанию закрыто или «ВЫКЛ», так как канал отсутствует. Когда напряжение затвора увеличивается больше, чем напряжение источника, носители заряда (дырки) смещаются, оставляя позади электроны, и, таким образом, устанавливается более широкий канал.
Напряжение на затворе прямо пропорционально току, то есть с увеличением напряжения на затворе ток увеличивается и наоборот.
Классификация режима насыщения МОП- транзисторов
Усовершенствованные МОП-транзисторы можно классифицировать на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).
- N-канальный тип насыщения MOSFET
- P-канальный тип насыщения MOSFET
N-канальный тип насыщения MOSFET
- Слегка легированная субстрат P-типа образует корпус устройства, а исток и сток сильно легированы примесями N-типа.
- N-канал имеет электроны в качестве основных носителей.
- Подаваемое напряжение затвора положительно для включения устройства.
- Он имеет более низкую собственную емкость и меньшую площадь соединения из-за высокой подвижности электронов, что позволяет ему работать на высоких скоростях переключения.
- Он содержит положительно заряженные примеси, что делает преждевременным включение полевых МОП-транзисторов с N-каналом.
- Сопротивление дренажу низкое по сравнению с P-типом.
P-канальный тип насыщения MOSFET
- Слегка легированная подложка N-типа образует корпус устройства, а исток и сток сильно легированы примесями P-типа.
- P-канал имеет отверстия в качестве основных носителей.
- Он имеет более высокую внутреннюю емкость и малую подвижность отверстий, что делает его работающим при низкой скорости переключения по сравнению с N-типом.
- Подаваемое напряжение затвора является отрицательным для включения устройства.
- Водостойкость выше по сравнению с N-типом.
Режим истощения
В этом типе канал уже установлен, и очевидно, что проводимость происходит даже при нулевом напряжении, и он открыт или включен по умолчанию. В отличие от типа насыщения, здесь канал лишен носителей заряда, чтобы уменьшить ширину канала.
Напряжение на затворе обратно пропорционально току, т. Е. С увеличением напряжения на затворе ток уменьшается.
Классификация режима истощения МОП-транзисторов
Истощающие МОП-транзисторы могут быть классифицированы на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).
- Тип истощения канала N МОП-транзистор
- Тип истощения канала P МОП-транзистор
Тип истощения канала N МОП-транзистор
- Полупроводник P-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Применяемое напряжение на затворе отрицательное.
- Канал обеднен свободными электронами.
Тип канала истощения канала MOSFET
- Полупроводник N-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Поданное напряжение затвора положительное.
- Канал обеднен свободными отверстиями.
Что представляет собой полевой транзистор
Полевые транзисторы — это трех или четырех контактные устройства, в которых ток, идущий на два контакта может регулироваться посредством напряжения электрополя третьего контакта. на двух контактах регулируется напряжением электрического поля на третьем. В результате этого подобные транзисторы называются полевыми.
Название расположенных на устройстве контактов и их функции:
- Истоки – контакты с входящим электрическим током, которые находится на участке n;
- Стоки – контакты с исходящим, обработанным током, которые находятся на участке n;
- Затворы – контакты, находящиеся на участке р, посредством изменения напряжения на котором, выполняется регулировка пропускной способности на устройстве.
Полевые транзисторы с n-p переходами – особые виды, позволяющие управлять током. От простых они, как правило, отличаются тем, через них протекает ток, без пересечения участка р-n переходов, участка который образуется на границах этих двух зон. Размеры р-n участка являются регулируемыми.
Что такое МОП-транзистор
Metal Oxide Silicon Field Effect Transistor (Металлооксидные полевые транзисторы) сокращается как МОП-транзистор. Это униполярный транзистор, используемый в качестве электронного переключателя и для усиления электронных сигналов. Устройство имеет три терминала, состоящих из истока, затвора и стока. Помимо этих клемм имеется подложка, обычно называемая корпусом, которая всегда подключается к клемме источника для практических применений.
В последние годы его открытие привело к доминирующему использованию этих устройств в цифровых интегральных схемах из-за его структуры. Слой диоксида кремния (SiO2) действует как изолятор и обеспечивает электрическую изоляцию между затвором и активным каналом между истоком и стоком, что обеспечивает высокий входной импеданс, который почти бесконечен, таким образом захватывая весь входной сигнал.
Достоинства и недостатки полевых транзисторов
Использование полевых транзисторов благодаря их универсальным характеристикам позволило обойти другие виды транзисторов. Они широко применяются для интегральной схемы в качестве выключателя.
Достоинства:
- каскады детали расходуют малое количество энергии;
- показатели усиления превышают, значения других аналогичных устройств;
- достижение высокой помехоустойчивости осуществляется за счет того, что отсутствует ток в затворе;
- обладают более высокой скоростью включения и выключения, работают с недоступными для других транзисторов частотами.
Недостатки:
- менее устойчивы к высоким температурам, которые приводят к разрушению;
- на частотах более 1,5 ГГц, количество потребляемой энергии стремительно увеличивается;
- чувствительны к статическим видам электричества.
Благодаря характеристикам, которыми обладают полупроводниковые материалы, взятые в качестве основы для полевого транзистора, позволяют использовать устройство в бытовой и производственной сфере. Полевыми транзисторами оснащается различная бытовая техника, которая используется современным человеком.
Режим истощения МОП-транзистора
Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.
Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.
Другими словами, для режима истощения п-канального МОП-транзистора:
- Положительное напряжение на стоке означает большее количество электронов и тока.
- Отрицательное напряжение означает меньше электронов и ток.
Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.
Транзистор полевой
При добавлении бора акцептор легированный кремний станет полупроводником с дырочной проводимостью p-Si , то есть в его структуре будут преобладать положительно заряженные ионы. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током.
На рисунке приведен полевой транзистор с каналом p-типа и затвором выполненным из областей n-типа. Опишем подробнее каждую модификацию.
Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. С его ростом расширяются р-n- переходы, уменьшается площадь сечения токопроводящего канала, увеличивается его сопротивление, а, следовательно, уменьшается ток в канале.
Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам. Устройство полевого транзистора с управляющим p-n переходом Приведено на рис.
См. также: Подключить электричество к участку
Другие популярные статьи
Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора. Транзистор имеет три вывода: исток, сток, затвор. Vgs — управляющее напряжение, Vg-Vs.
Этот принцип используют для усиления сигналов. На конкретной схеме это p-канальный прибор затвор — это n-слой, имеет меньше удельное сопротивление, чем область канала p-слой , а область p-n-перехода в большей степени расположена в p-области по этой причине.
Похожие публикации
Типы полевых транзисторов и их схематическое обозначение. В результате возникают некомпенсированные заряды: в области n-типа — из отрицательных ионов, а в области p-типа из положительных. Схема с общим истоком Истоком называют электрод, через который в канал поступают носители основного заряда. С общим стоком в. МДП — транзисторы выполняют двух типов — со встроенным каналом и с индуцированным каналом.
Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок в зависимости от типа проводимости основного кристалла. И даже наоборот, его наличие специально используется в некоторых схематических решениях. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной.
Схемы включения полевых транзисторов
Азбука устройства MOSFET
В общих чертах MOSFET позволяет с помощью низкого напряжения на затворе управлять током, протекающим по каналу «исток-сток». Благодаря этому свойству можно значительно упростить схему управления, а также снизить суммарную затрачиваемую на управление мощность.
На сегодняшний день широкое распространение получили две технологии производства MOSFET: планарная и Trench.
Первые MOSFET были созданы по планарной технологии. Транзисторы, изготавливаемые по этой технологии, изображены на рис. 1. Их структура состоит из металла и полупроводника, разделенных слоем оксида кремния SiO2.
Рис. 1. Планарная технология – первые дискретные MOSFET
Trench-структура (рис. 2) имеет более высокую плотность ячеек, что выражается в более низком значении Rds(on). В Trench MOSFET на поверхности подложки создается V-образная канавка, на которую осаждается слой оксида, и затем происходит металлизация.
Рис. 2. Высокоплотные Trench MOSFET могут быть меньше, чем их планарные собратья, но обладать сравнимым значением Rds(on)
Поле затвора в Trench MOSFET оказывает влияние на гораздо большую область кремния. В результате этого для получения аналогичного Rds(on) требуются меньшие физические размеры, чем при изготовлении MOSFET по планарной технологии.
Наряду с явными достоинствами MOSFET имеют и отрицательные стороны. Так, между слоем n- стока и p+ истока формируется внутренний диод. Характеристики этого диода приводятся в технических данных на все MOSFET
Применяя MOSFET в импульсных схемах, всегда нужно принимать во внимание время обратного восстановления внутреннего диода. Также, в MOSFET формируется внутренний NPN-транзистор, коллектором которого является n-слой стока, базой – p-слой, а эмиттером – n-слой истока
Необходимо учитывать, что металлизация истока (рис. 3) в некоторых местах имеет очень низкое сопротивление между переходом «база-эмиттер», этот момент осложняет включение транзистора.
Рис. 3. Внутренние диод и биполярный транзистор в структуре MOSFET
Где используются полевые транзисторы?
Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!
И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.
Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.
ПТ широко используются в компьютерных блоках питания и низковольтных импульсных стабилизаторах на материнской плате компьютера.
Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.
Схемы включения полевых транзисторов
Сфера применения полевых транзисторов та же, что и у биполярных. В основном они применяются в качестве усилительных элементов. Биполярные триоды при применении в усилительных каскадах имеют три основные схемы включения:
- с общим коллектором (эмиттерный повторитель);
- с общей базой;
- с общим эмиттером.
Полевые транзисторы включаются подобными способами.
Схема с общим стоком
Схема с общим стоком (истоковый повторитель), так же, как и эмиттерный повторитель на биполярном триоде, усиления по напряжению не дает, но предполагает усиление по току.
Достоинством схемы является высокое входное сопротивление, оно же в некоторых случаях является недостатком – каскад становится чувствительным к электромагнитным помехам. При необходимости Rвх можно уменьшить включением резистора R3.
Схема с общим затвором
Эта схема подобна схеме включения биполярного транзистора с общей базой. Эта схема дает хорошее усиление по напряжению, но усиление по току отсутствует. Как и включение с общей базой, такой вариант применяется нечасто.
Схема с общим истоком
Наиболее распространена схема включения полевых триодов с общим истоком. Её коэффициент усиления зависит от соотношения сопротивления Rс к сопротивлению в цепи стока (для регулировки усиления в цепи стока может быть установлен дополнительный резистор), а также зависит от крутизны характеристики транзистора.
Также полевые транзисторы используются в качестве управляемого сопротивления. Для этого рабочая точка выбирается в пределах линейного участка. По этому принципу можно реализовать управляемый делитель напряжения. А на двухзатворном триоде в таком режиме можно реализовать, например, смеситель для приёмной аппаратуры – на один затвор подается принимаемый сигнал, а на другой – сигнал с гетеродина.
Если принять теорию о том, что история развивается по спирали, можно увидеть закономерность в развитии электроники. Уйдя от ламп, управляемых напряжением, технологии пришли к биполярным транзисторам, которым для управления нужен ток. Спираль сделала полный виток – сейчас наблюдается доминирование униполярных триодов, не требующих, как и лампы, расхода мощности в цепях управления. Куда дальше выведет циклическая кривая – будет видно. Пока альтернативы полевым транзисторам не наблюдается.
Как работает транзистор и где используется?
Что такое биполярный транзистор и какие схемы включения существуют
Что такое оптрон, как работает, основные характеристики и где применяется
Назначение, характеристики и аналоги транзистора 13001
Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик
Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность