От чего зависит срок службы электродвигателей

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Повторно-кратковременный режим S3

3. Повторно-кратковременный режим S3 — когда кратковременные периоды работы двигателя tр чередуются с периодами отключения двигателя (паузами) tп, причем за период работы tp превышение температуры не успевает достигнуть установившихся значений, а за время паузы части двигателя не успевают охладиться до температуры окружающей среды. Общее время работы двигателя в повторно-кратковременном режиме разделяется на периодически повторяющиеся циклы продолжительностью

tц = tр+tп

При повторно-кратковременном режиме работы график нагревания двигателя имеет вид пилообразной кривой (рис. 2.11, г). При достижении двигателем установившегося значения температуры перегрева, соответствующего повторно-кратковременному режиму τуст.к, температура перегрева двигателя продолжает колебаться от τmin до τmax. При этом τуст.к меньше установившейся температуры перегрева, которая наступила бы, если режим работы двигателя был продолжительным (τуст.к < τуст). Примерами повторно-кратковременного режима являются работа электроприводов лифтов, подъемных кранов, экскаваторов и других устройств, для которых характерна цикличность (чередование периодов работы с паузами). При этом продолжительность цикла tц = tр+tп не должна превышать 10 мин.

Повторно-кратковременный режим характеризуется относительной продолжительностью включения, %,

ПВ = (tр/tц) *100

Действующим стандартом предусмотрены номинальные повторно-кратковременные режимы с ПВ 15, 25, 40 и 60 % (для продолжительного режима ПВ= 100 %). В условном обозначении повторно-кратковременного режима указывают величину ПВ, например, S3 — 40%.

При переводе двигателя из продолжительного режима (ПВ = 100%) в повторно-кратковременный режим мощность двигателя, по сравнению с его мощностью в продолжительном режиме, может быть увеличена: при ПВ = 60% на З0%, при ПВ = 40% на 60%, при ПВ = 25% — в 2 раза, при ПВ = 15 % — в 2,6 раза.

Рассмотренные три номинальных режима считаются основными. В каталогах на двигатели, предназначенные для работы в каком-либо из этих режимов, указаны номинальные данные, соответствующие режиму работы.

Помимо рассмотренных трех основных режимов, стандартом предусмотрены еще и дополнительные режимы:повторно-кратковременный режим S4 с частыми пусками, с числом включений в час 30, 60, 120 или 240;

повторно-кратковременный режим S5 с частыми пусками и электрическим торможением в конце каждого цикла;

перемежающийся режим S6 с частыми реверсами и электрическим торможением;

перемежающийся режим S7 с частыми пусками, реверсами и электрическим торможением;

перемежающийся режим S8 с двумя и более разными частотами вращения.

Сравнение синхронных и асинхронных электродвигателей

Оба вида этого оборудования работают от переменного тока. Скорость синхронных двигателей постоянная, частота вращения магнитного поля равна частоте вращения ротора.

Отличительные особенности:

  • коэффициент мощности до 0,9;
  • КПД на 1-3% выше, чем у асинхронного оборудования;
  • высокая прочность благодаря сравнительно большому воздушному зазору;
  • низкая чувствительность к скачкам напряжения с электросети;
  • возможно использование для повышения коэффициента мощности на производстве.

Важно! К недостаткам можно отнести сравнительно высокую стоимость и сложность аппаратуры, используемой для пуска. Уязвимые узлы:

Уязвимые узлы:

  • графитные щетки и подшипники (быстро снашиваются);
  • относительно слабая пружина для прижимания щеток к коллектору;
  • тонкосъемное кольцо, склонное к скоплению налета из грязи.

Повышенного внимания требуют щетки. Если графит полностью стирается, повреждается токосъемное кольцо. При его выходе из строя двигатель перестает функционировать.

В асинхронных двигателях частота вращения магнитного поля отличается от частоты вращения ротора. Конструкция простая, эксплуатация более надежная. При отсутствии перегрузок это оборудование служит долго.

Популярные статьи  Схемы управления двигателями в функции времени

Преимущества асинхронной конструкции:

  • простота производства;
  • сравнительно низкая стоимость;
  • минимум затрат на эксплуатацию;
  • подключение к сети без преобразователей (если отсутствует необходимость регулировать скорость).

При выборе необходимо учесть минусы:

  • низкий коэффициент мощности и КПД (по сравнению с синхронными моделями);
  • повышенная зависимость от напряжения в электросети;
  • большая величина пускового тока и незначительный пусковой момент;
  • невозможность регулировать скорость, если подключать прямо к сети.

Внимание! Самое уязвимое место – подшипники, но их замена проблем не создает

Режим работы

Различают три основных и шесть дополнительных режимов – S1-S9 соответственно.

Основные

К основным относятся S1, S2 и S3. При первом двигатель может работать длительно и беспрерывно. В течение работы он подвергается нагреву до установившейся температуры. Нагрузка может быть постоянной или изменяющейся. Первая свойственна конвейерам, насосному оборудованию, вентиляторам, вторая – станкам для резки, обработки металла, дерева.

S2 – это кратковременный режим. При нем двигатель работает 10, 30, 60 или 90 минут. При этом нагрев не доходит до допустимой температуры. А при отключении – спадает до температурных условий на объекте. В S2 работают электродвигатели для запорных устройств.

При повторно-кратковременном режиме S3 узлы сильно не нагреваются. Электродвигатель действует циклично, чередуя функционирование под нагрузкой и вхолостую. При паузе он не охлаждается до уровня окружающей среды. В S3 работают подъемное оборудование – лифты, краны, экскаваторы.

Дополнительные

Режимы S4-S8 – периодические:

  • S4 – повторно-кратковременный, на который влияют пусковые процессы;
  • S5 – повторно-кратковременный с электрическим торможением;
  • S6 – перемежающийся;
  • S7 – сочетает в себе S4, S5 и S6:
  • S8 – перемещающийся с 2 и более частотами вращения.

Они имеют следующие особенности:

Режим Как работает электродвигатель
S4 Долго запускается, при этом пусковые потери повышают температуру узлов
Работает при постоянной нагрузке
Делает паузу, при которой температура узлов не падает до уровня окружающей среды
S5 Долго запускается
Функционирует при постоянной нагрузке, при которой узлы не нагреваются до установившейся температуры,
S6 Функционирует с постоянной нагрузкой
Делает паузу, в течение которой температура не доходит для установившегося уровня
S7 Долго запускается
Работает при постоянной нагрузке без пауз
Быстро тормозит
S8 Функционирует без пауз, при этом у него может быть установлено несколько частот вращения и нагрузки

При работе в режиме S9 двигатель меняет нагрузку и частоту вращения без определенных периодов.

Области применения электродвигателей

Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии .

  • Электродвигатели используются повсеместно, основные области применения:
  • промышленность: насосы, вентиляторы, компрессоры, конвейеры, движущая сила для других машин и др.
  • строительство: насосы, вентиляторы, конвейеры, лифты, системы отопления, вентиляции и кондиционирование воздуха и др.
  • потребительские устройства: холодильники, кондиционеры, персональные компьютеры и ноутбуки (жесткие диски, вентиляторы), пылесосы, стиральные машинки, миксеры и др.
ЭД1 Функции Области применения
Вращающиеся электродвигатели Насосы Системы водоснабжения и водоотведения
Системы перекачки охлажденной или нагретой воды, системы отопления, ОВК2, системы полива
Системы канализации
Перекачка нефтепродуктов
Вентиляторы Приточно-вытяжная вентиляция, ОВК2, вентиляторы
Компрессоры Системы вентиляции, холодильные и морозильные установки, ОВК2
Накопление и распределение сжатого воздуха, пневматические системы
Системы сжижения газа, системы перекачки природного газа
Вращение, смешивание, движение Прокатный стан, станки: обработка металла, камня, пластика
Прессовое оборудование: обработка алюминия, пластиков
Обработка текстиля: ткачество, стирка, сушка
Смешивание, взбалтывание: еда, краски, пластики
Транспорт Пассажирские лифты, эскалаторы, конвейеры
Грузовые лифты, подъемные краны, подъемники, конвейеры, лебедки
Транспортные средства: поезда, трамваи, троллейбусы, автомобили, электромобили, автобусы, мотоциклы, велосипеды, зубчатая железная дорога, канатная дорога
Угловые перемещения (шаговые двигатели, серводвигатели) Вентили (открыть/закрыть)
Серво (установка положения)
Линейные электродвигатели Открыть/закрыть Вентили
Сортировка Производство
Хватать и перемещать Роботы

Примечание:

  1. ЭД — электродвигатель
  2. ОВК — системы отопления, вентиляции и кондиционирование воздуха

Как узнать пусковой ток?

Кратность пускового тока (отношение пускового тока к номинальному) найти в документации на двигатель бывает не так-то просто. Но его можно измерить (оценить, узнать) самому. Вот навскидку несколько способов:

  1. Первый способ (лучший для теоретического изучения) – использовать осциллограф. Взять шунт (например, резистор 0,1…0,5 Ом, чем меньше по сравнению с обмотками, тем лучше), и посмотреть на нём осциллограмму в момент пуска. Далее из максимального амплитудного значения определяем действующее напряжение (поделить на корень из 2), далее по закону Ома считаем пусковой ток. Можно ничего не умножать и не делить – просто измерить клещами ток в рабочем режиме, и умножить его на разницу токов на экране осциллографа. Способ хорош тем, что видно переходные процессы, вызванные ЭДС самоиндукции, мгновенные значения тока, длительность разгона. Кроме того, учитываются параметры питающей сети. Ещё плюс – пусковой ток измеряется реальный, на реальном двигателе и механизме.
  2. Второй способ измерения пускового тока – подать на двигатель пониженное (в 5-10 раз) напряжение рабочей частоты и измерить ток. Почему пониженное? Это необходимо для того, чтобы ротор можно было легко зафиксировать, не допуская перегрева. Измеренный ток пересчитать, получим пусковой. Достаточно измерить ток на одной фазе. По другим токи будут (обязаны быть) такими же. Этот способ используют при производстве и испытаниях двигателей. Именно этим способом производители получают табличные данные. Способ опирается на номинальный ток, в реальности (на реальном механизме) пусковой ток может быть другим!
  3. Измерить пусковой ток токоизмерительными клещами. Плюс этого способа – простота и оперативность. Клещи используют в большинстве случаев для проверки режимов работы двигателей. Минус – такие клещи достаточно инерционны, а нам нужно увидеть, что происходит за доли секунды. Но этот минус нивелируется, когда мы измеряем ток при пуске нагрузки с высоким моментом инерции (вентиляторы, насосы с массивными крыльчатками). Пуск длится более 10 сек, и на экране клещей всё видно. Добавлю, что есть клещи с функцией Inrush, которые могут измерять пусковой ток от 0 до максимума в течение времени интегрирования порядка 100 мс.
  4. Трансформатор тока. Такой используется, например, в узлах учета электроэнергии – благодаря трансформатору тока нет необходимости измерять реальной ток, а можно измерить ток, уменьшенный в точно известное количество раз. Так же измеряют ток в электронных пусковых устройствах (преобразователях частоты, софтстартерах). Минус способа – трансформатор тока рассчитан на частоту 50/60 Гц, а переходные процессы во время пуска имеют широкий спектр и много гармоник. Поэтому можно сказать, что такой способ тоже обладает высокой инерционностью.

Конечно, реальность отличается от эксперимента. Прежде всего тем, что ток короткого замыкания реальной сети питания не бесконечен. То есть, провода, питающие двигатель, имеют сопротивление, на котором в момент пуска падает напряжение (иногда – до 50%). Из-за этого ограничения реальный пусковой ток будет меньше, а разгон – длительнее. Поэтому нужно понимать, что значение кратности пускового тока, указанное производителем, в реальности всегда будет меньше.

Популярные статьи  Измерение тока и напряжения при эксплуатации электрооборудования на промышленных предприятиях

Для чего нужны двигатели – приводить в действие механизмы и получать прибыль!

Теперь разберём другой вопрос –

Как продлить срок службы двигателей переменного тока

Чтобы этот вид оборудования служил долго, необходимо:

  • верно выбрать модель;
  • правильно установить;
  • соблюдать советы производителя по эксплуатации;
  • своевременно проводить техническое обслуживание;
  • контролировать температуру во время работы;
  • следить за состоянием обмотки;
  • мгновенно реагировать на посторонний шум и повышенную вибрацию.

При выборе электродвигателя следует учесть:

  • требуемые обороты и мощность;
  • способ монтажа и напряжение;
  • величину КПД и коэффициента мощности;
  • дополнительные требования, связанные с условиями эксплуатации.

При монтаже используется лебедка, таль или кран. Перед началом работы следует проверить допустимую нагрузку подъемного устройства. При установке можно использовать только инструменты, не имеющие дефектов. При центровке, замене смазки, проверке зазоров, регулировке щеток обязательно отключение рубильника.

Предотвратить сбои помогает регулярный осмотр во время работы. Необходимо периодически затягивать крепления и болты, очищать поверхность. Не менее важен контроль за соответствием показателей тока заводским параметрам.

Срок службы электродвигателя напрямую зависит от срока службы изоляции. Для каждого класса установлен допустимый уровень температуры. Его превышение способствует разрушению изоляционного материала.

Внимание! Если оборвалась обмотка, единственное верное решение – перемотать. Скручивать или спаивать ее нельзя

В процессе перемотки важно соблюдать параметры сечения и количество витков. Важно правильно выбрать оборудование, обеспечивающее аварийное отключение

Самыми эффективными считаются приборы максимальной токовой защиты (МТЗ)

Важно правильно выбрать оборудование, обеспечивающее аварийное отключение. Самыми эффективными считаются приборы максимальной токовой защиты (МТЗ)

Во время работы следите, чтобы вибрации и шум не превышали допустимый уровень. Отклонения свидетельствуют о неисправности механизма, которую необходимо найти и устранить немедленно.

Выбор электродвигателя осуществляется с учетом конструкции, режима работы, мощности, условиям пуска. Если самостоятельно рассчитать параметры не получается, желательно посоветоваться с опытным механиком или консультантом магазина. Любая ошибка при покупке может обернуться выходом из строя машины, для которой электродвигатель предназначен, и дополнительными финансовыми затратами.

Выбор инвертора

Благодаря усилиям лоббистов местных энергетических компаний в сочетании с преимуществами, получаемыми при возможности регулирования скорости вращения ротора двигателей, все более распространенными становятся частотно-регулируемые приводы (ЧРП, англ. variable frequency drive, VFD)

При их использовании особое внимание следует уделять генерации электромагнитных помех, которая характерна для таких приводов исходя из самой их природы. Для того чтобы электродвигатель мог использоваться с ЧРП, необходимо учитывать несколько технических особенностей, которым должен удовлетворять подходящий по остальным характеристикам электродвигатель

Среди них можно выделить две главные:

Максимально допустимое напряжение изоляции обмоточных проводов статора электродвигателя.

Электрическая прочность изоляции провода, из которого выполнена обмотка статора асинхронного электродвигателя, находится в пределах 1000–1600 В, но, как правило, в документации указывается значение прочности изоляции, равное 1200 В. Однако чем больше воздушный зазор между приводом и двигателем, тем, естественно, бо́льшим скачкам переходного напряжения, воздействующим на двигатель, он может противостоять. Электродвигатель, в котором для обмотки статора используется провод с электрической прочностью изоляции провода, равной 1600 В, может иметь ссылку на стандарт Национальной ассоциации производителей электрооборудования (NEMA, США) NEMA MG-1 2003, раздел 4, параграф 31, в котором говорится, что двигатель должен выдерживать без повреждений начальное напряжение коронного разряда (англ. corona inception voltage, CIV) уровнем до 1600 В.

Коэффициент сохранения постоянного крутящего момента (CT) двигателя, часто упоминается как «xx: 1 CT».

Этот показатель дает представление о диапазоне регулирования скорости. По нему можно узнать, насколько может быть снижена скорость вращения ротора двигателя, при которой он будет работать с сохранением того же крутящего момента (англ. CT — constant torque, постоянный крутящий момент), что и при номинальной скорости. Ниже этого значения крутящего момента производительность асинхронного электродвигателя снижается.

От чего зависит срок службы электродвигателейНапример, возьмем электродвигатель мощностью 10 л. с. с начальной скоростью 1800 об/мин. При номинальной скорости (около 1800 об/мин), как указано, он имеет крутящий момент 29 фунтов на фут. Если в спецификации на электродвигатель написано, что коэффициент сохранения номинальной мощности составляет 10:1 CT, это означает, что такой электродвигатель может обеспечить номинальный крутящий момент до скорости 180 об/мин. Если же указано, что электродвигатель имеет коэффициент сохранения номинальной мощности 1000:1 CT, то имеется в виду, что крутящий момент сможет сохранять номинальное значение до скорости 1,8 об/мин.

При этом необходимо учитывать еще один нюанс, который связан с охлаждением электродвигателя. Нужно обязательно уточнить у поставщика, будет ли электродвигатель перегреваться при длительной работе на малых оборотах. Дело в том, что если двигатель охлаждается за счет крыльчатки, закрепленной на его валу, то на малых скоростях вы столкнетесь с низкой скоростью охлаждающего двигатель потока воздуха. Если асинхронный электродвигатель работает на низкой скорости и в течение длительного времени используется с большим крутящим моментом, то он будет выделять много тепла — при таких условиях, возможно, придется остановить свой выбор на двигателе с иным методом охлаждения.

Например, для организации принудительного охлаждения можно применить воздуходувное устройство, имеющее собственный, отдельно управляемый двигатель. Производительность такого устройства не связана с системой управления электропривода. В этом случае воздушный поток, который обдувает мощный электродвигатель, будет постоянным и достаточным для его охлаждения при низкой или даже при нулевой скорости.

Классификация электродвигателей

Вращающийся электродвигатель
Само коммутируемый Внешне коммутируемый
С механической коммутацией (коллекторный) С электронной коммутацией1 (вентильный2, 3) Асинхронный электродвигатель Синхронный электродвигатель
Переменного тока Постоянного тока Переменного тока4 Переменного тока
  • Универсальный
  • Репульсионный
    • Включение обмотки
  • БДПТ(Бесколлекторный двигатель + ЭП |+ ДПР)
  • ВРД(Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)
  • Трехфазный(многофазный)
  • Двухфазный(конденсаторный)
  • Однофазный
  • СДОВ
  • СДПМ
    • СДПМВ
    • СДПМП
    • Гибридный
  • СРД
  • Гистерезисный
  • Индукторный
  • Гибридный СРД-ПМ
  • Реактивно-гистерезисный
  • Шаговый5
Простая электроника Выпрямители,транзисторы Более сложнаяэлектроника Сложная электроника (ЧП)

Примечание:

  1. Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
  2. Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря .
  3. Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля .
  4. Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
  5. Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.

Аббревиатура:

  • КДПТ — коллекторный двигатель постоянного тока
  • БДПТ — бесколлекторный двигатель постоянного тока
  • ЭП — электрический преобразователь
  • ДПР — датчик положения ротора
  • ВРД — вентильный реактивный двигатель
  • АДКР —
  • АДФР —
  • СДОВ — синхронный двигатель с обмоткой возбуждения
  • СДПМ — синхронный двигатель с постоянными магнитами
  • СДПМП —
  • СДПМВ —
  • СРД — синхронный реактивный двигатель
  • ПМ — постоянные магниты
  • ЧП — частотный преобразователь
Популярные статьи  Применение и эксплуатация элегазовых выключателей

Рекомендации по использованию

От чего зависит срок службы электродвигателей

К электроприводам обычно прикладывают инструкции, требования в которой чрезвычайно важны для соблюдения. Если Вы не понимаете каких-то моментов, не бойтесь задать вопросы изготовителю.

Необходимо обращать внимание на следующие моменты:

  • Измерения сопротивления изоляции обмоток ротора/статора (необходимо делать перед каждым пуском).
  • Измерения температуры обмоток (при фиксированных нагрузках).
  • Наблюдение за температурами подшипников.
  • Наблюдение за вибрациями электродвигателя.

От чего зависит срок службы электродвигателей

Нельзя использовать движок в местах, где отсутствует вентиляция, так как это приведёт к перегреву и выходу из строя электродвигателя.

Уровень влажности тоже нужно контролировать, потому что она влияет на разность в температурах и приведет к снижению эксплуатации. Подшипники тоже могут быстро закончить работу из-за конденсата от влажности.

Повышение магнитного потока статора и тока намагничивания приводит к перегреву сердечника. Сердечник может нагреться так сильно, что приведёт к пожару. Для большей безопасности следить за напряжением, питающим привод.

Схема подключения электродвигателей

Номинальные данные приводятся в соответствии с ГОСТ28173-89.

Электродвигатели АИР, расчитанные на напряжение 220/380В, должны подключаться при соединении обмоток в «звезду»на линейное напряжение 380В, а при соединении обмоток в «треугольник» на линейное напряжение 220В.

Аналогично, электродвигатели АИР, рассчитанные на напряжение 380/660В, должны подключаться при соединении обмоток в «звезду» на линейное напряжение 660В, а при соединении обмоток в «треугольник» на линейное напряжение 380В.

У электродвигателей, рассчитанных на напряжение 380В, обмотки по умолчанию соединены в «звезду» на линейное напряжение 380В.

Иное подключение обмоток приведет к выходу электродвигателя из строя и отказу завода-изготовителя от гарантийных обязательств по причине наличия «вины потребителя».

Устройство фазного ротора

Разрез асинхронного двигателя с фазным ротором. Рисунок 4 1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца

Фазный ротор характерен наличием трех фазных обмоток. Они, зачастую, соединяются по схеме звезды (иногда по схеме треугольника). Каждый конец фазной обмотки присоединен к медному кольцу. Кольца же укрепляются на валу и изолируются. Это дало двигателю еще одно название: асинхронный электродвигатель с контактными кольцами. Всего кольца три. Их плотно насаживают на вал с помощью изоляционных прокладок. На кольца наложены щетки (они расположены в щеткодержателе, в свою очередь укрепленных на крышке подшипника).

Щетки всегда имеют исправный электроконтакт с кольцами. Это соединяет их с самой обмотками якоря. Между собой щетки соединяет трехфазный реостат.

Принцип работы асинхронной машины

Все асинхронные двигатели работают по принципу вращающегося магнитного поля. Но как создать такое поле? Самый простой способ – вращать постоянный магнит по оси. Можно взять медный диск и крутить магнит уже вокруг него. Если магнит достаточно силен, то медный диск тоже начнет вращаться, как бы пытаясь угнаться за магнитом. Будет создаваться ощущение, что между двумя предметами есть некая связь которая постоянно их удерживает. Движение магнита и диска будет не синхронным, ведь последний всегда будет отставать в «погоне».

Объяснение этому явлению можно дать такое: вращаясь вокруг диска, магнит способен возбудить в нем токи Фуко (индукционные). Их траектория – замкнутый круг. Индукционные токи не имеют начала и конца. Их можно назвать токами короткого замыкания, разогревающими металл. Как правило, от них нужно избавляться, но в этом случае именно они и являются причиной появления магнитного поля в диске. Далее это поле начинает взаимодействие уже с полем самого постоянного магнита. 

Асинхронные электромоторы работают по такому же принципу, но вращающееся поле создает не магнит, а обмотка статора. В ней, собственно, и создается подходящее для вращения поле. 

Подобные условия возможно создать только в системе с несколькими фазами, где ток сдвигается на несколько градусов. В бытовых электроприборах двигатели обычно с двумя фазами, причем вторую создают искусственно. Для этого используют сдвигающий конденсатор, катушку или сопротивление. Электродвигатели, используемые на промышленных предприятиях, выпускают с тремя фазами.

В самом первом трехфазном асинхронном электродвигателе было три обмотки. Они были удалены друг от друга на 120 градусов. Схема работы такого двигателя и синусоидальный ток трех его полюсов показан на рисунке 4. 

Рисунок 4

Итак, в тот момент, когда в одной из фаз ток нулевой, в остальных он принимает максимальные значения, при этом фазы отличаются по направлению тока. Таким образом и создается магнитное поле между двумя из трех обмоток. Далее все тут же меняется: один полюс отключается, а другой, тот что остался работать, начинает менять полярность. Это происходит из-за изменения направления тока в обмотке. А тот полюс, что только перешел в рабочее состояние, поддержит смещение поля. Благодаря этому в якоре машины формируются вихревые токи (так как линии магнитного поля пересекают часть ротора). Токи входят во взаимодействие с полем статора, которое уже вращается, пытаются его как бы догнать. Происходит поворот ротора.

Такой принцип работы асинхронной машины, который был выведен еще в XIX веке, актуален и для тех электромоторов, что производят сегодня. Однако, изменения в конструкции все же произошли. Дисковые и цилиндровые якори теперь заменили на «беличьи клетки», чаще используют роторы фазного типа. Форма обмотки статичной части двигателя тоже подверглась изменениям. Вместо катушки с полюсным наконечником используют радиальные обмотки: их укладывают в пазы.

Стоит также упомянуть о том, что такое схема замещения асинхронного двигателя. Ее часто используют в электротехнике во время проведения расчетов. Вместо самого электродвигателя подставляют эквивалентную схему, где электромагнитную связь замещает электрическая.

Как подключить электродвигатель к сети

Питающее напряжение у разных потребителей разное, из-за этого время от времени электрическое оборудование приходится переподключать. Предложенная ниже инструкция поможет безопасно подключить электродвигатель на 220 В. 

Задача достаточно проста. Главное в этом деле – не ошибиться при подключении обмоток. Классификация двигателей включает в себя два типа:

  • трехфазного с обмоткой (схема включения звезда или треугольник);
  • однофазного (у него пусковая обмотка). 

Их способы подключения мы и рассмотрим.

Оцените статью
( Пока оценок нет )
Добавить комментарий