Способы расчёта
Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.
Вам это будет интересно Как вычислить реактивную и активную мощность
Через силу тока
Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:
- L — индуктивность контура (в генри);
- Ф — величина магнитного потока, измеряемого в веберах;
- I — сила тока в катушке (в амперах).
Соленоид конечной длины
Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:
- µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
- N — количество витков в катушке;
- S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
- l — длина соленоида в метрах.
Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:
- W — энергия магнитного потока, измеряемая в джоулях;
- I — сила тока в амперах.
Катушка с тороидальным сердечником
В большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:
- N — число витков катушки;
- µ — относительная магнитная проницаемость;
- µ0 — магнитная постоянная;
- S — площадь сечения сердечника;
- π — математическая постоянная, равная 3,14;
- r — средний радиус тора.
Вам это будет интересно Как измерять напряжение
Длинный проводник
Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:
- l — длина проводника в метрах;
- r — радиус сечения провода, измеряемый в метрах;
- µ0 — магнитная постоянная;
- µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
- µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
- π — число Пи;
- ln — обозначение логарифма.
Линейный трансформатор:
Если катушки в трансформаторе намотаны на магнитно-линейный материал, то он называется линейным трансформатором. Магнитно-линейные материалы имеют постоянную проницаемость.
В линейном трансформаторе магнитный поток пропорционален току, проходящему через обмотки. Катушка, которая напрямую соединена с источником напряжения, называется первичной катушкой, а катушка, соединенная с импедансом нагрузки, называется вторичной. Если R1 включен в цепь с источником напряжения и R2 включен в цепь с нагрузкой.
Применяя закон Кирхгофа к двум сеткам, мы можем написать:
…… (1)
..… .. (2)
Входное сопротивление первичной обмотки,
Первый член (R1+ jωL1) называется первичным импедансом, а второй член — отраженным импедансом ZR.
История накопителей заряда
Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.
Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.
Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях. Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни. Основные даты хронологии появления устройств для хранения зарядов:
- 1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
- 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
- 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
- конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
- начало XX в. — изобретение слюдяных и керамических конденсаторов.
Индуктивность и емкость в цепи переменного тока
Изменения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вообще говоря, различны. Поэтому если начальную фазу силы тока условно принять за нуль, то начальные фазы напряжения и э. д. с. соответственно будут иметь некоторые значения ϕ и ψ. При таком условии мгновенные значения силы тока, напряжения и э. д. с. будут выражаться следующими формулами:
i = Iм sin ωt
u = Uм sin (ϕ + ωt),
e = Ɛm sin (ψ + ωt).
Сопротивление цепи, которое обусловливает безвозвратные потери электрической энергии на тепловое действие тока, называют активным. Это сопротивление для тока низкой частоты можно считать равным сопротивлению R этого же проводника постоянному току и находить по формуле:
R=(pl/S)(1 + at).
В цепи переменного тока, имеющей только активное сопротивление, например в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. ϕ=0. Это означает, что ток и напряжение в такой цепи изменяются в одинаковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.
График и схема подключения
Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление XL, которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. самоиндукции тем больше, чем больше индуктивность цепи и чем быстрее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω:
ХL = ωL.
Влияние индуктивного сопротивления на силу тока в цепи наглядно иллюстрируется опытом, изображенным на рис. 26.6. При опускании ферромагнитного сердечника в катушку лампа гаснет, а при его удалении вновь загорается. Это объясняется тем, что индуктивность катушки сильно возрастает при введении в нее сердечника. Следует отметить, что напряжение на индуктивном сопротивлении опережает по фазе ток.
Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.
Катушки индуктивности
Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течет переменный ток. Сила тока будет тем больше, чем больше емкость конденсатора и чем чаще происходит его перезарядка, т. е. чем больше частота переменного тока. Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивлением Хс. Оно обратно пропорционально емкости С и круговой частоте ω;
Хс = 1/ωС
Из сравнения формул (26.11) и (26.12) видно, что катушки индуктивности представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Напряжение на емкостном сопротивлении Ха отстает по фазе от тока. Индуктивное XL и емкостное Хс сопротивления называют реактивными. В теории переменного тока доказывается, что при последовательном включении индуктивного и емкостного сопротивлений общее реактивное сопротивление равно их разности:
Будет интересно Что такое электромагнитная индукция?
X = XL—XC
и имеет индуктивный характер при XL > Хс и емкостный характер при XL < Xc.
В заключение заметим, что средняя активная мощность переменного тока, показывающая, сколько энергии за единицу времени передается электрическим током данному участку цепи, определяется формулой:
P = IU cos ϕ.
Мощность, затрачиваемая только на тепловое действие тока, выражается формулой:
Р = I2R
Для увеличения активной мощности переменного тока нужно повышать cos ϕ. (Объясните, почему наибольшее значение cos ϕ имеет при XL=XC.)
Индуктивность
ИНДУКТИВНОСТЬ
Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф
B), индукция пропорциональна силе тока в проводнике (B
I), следовательно магнитный поток пропорционален силе тока (Ф
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.
Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:
где Ф — магнитный поток через контур, I — сила тока в контуре.
Единицы измерения индуктивности в системе СИ:
Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
Индуктивность взаимная — величина, характеризующая магнитную связь двух или более электрических цепей (контуров). Если имеется два проводящих контура , то часть линий магнитной индукции, создаваемых током в первом контуре, будет пронизывать площадь, ограниченную вторым контуром (т. е. будет сцеплена с контуром 2).
Магнитный поток Ф12 через контур 2, созданный током I1 в контуре 1, прямо пропорционален току:
Коэффициент пропорциональности M12 зависит от размеров и формы контуров 1 и 2, расстояния между ними, их взаимного расположения, а также от магнитной проницаемости окружающей среды и называется взаимной индуктивностью или коэффициентом взаимной индукции контуров 1 и 2. В системе СИ И. в. измеряется в Генри.
Трансформаторная ЭДС. Принцип действия трансформатора основан на явлении электромагнитной индукции. Линии индукции магнитного поля, создаваемого переменным током в первичной обмотке, благодаря наличию сердечника практически без потерь пронизывают витки вторичной обмотки. Поскольку магнитный поток во вторичной обмотке изменяется со временем (т.к. в первичной обмотке переменный ток), то согласно закону Фарадея в ней возбуждается ЭДС индукции. Трансформатор может работать только на переменном токе, т.к. магнитный поток, созданный постоянным током, не изменяется с течением времени.
Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС E1 и с действующим значением напряжения U1. На вторичной обмотке ЭДС E2 и напряжение U2.
Из законов Ома следует, что напряжение на обмотке равно
(1)
где r — сопротивление обмотки. При изготовлении трансформатора сопротивление первичной обмотки r1 делают очень малым, поэтому часто им можно пренебречь. Тогда
Если пренебречь потерями магнитного потока в сердечнике, то в каждом витке вторичной обмотки будет индуцироваться точно такая же ЭДС индукции e1, как и ЭДС индукции e2 в каждом витке первичной обмотки, т.е. e1 = e2. Следовательно, отношение ЭДС в первичной E1 и вторичной E2 обмотках равно отношению числа витков в них:
(2)
Трансформаторный ток. Токи обмоток обратно пропорциональны числам витков (I1/I2 приблиз = w1/w2 = 1/n). С увеличением тока активно-индуктивного приемника вторичное напряжение несколько снижается.
Рис.1.11. К определению магнитного потока рассеяния в катушке с ферромагнитным сердечником
часть магнитного потока катушки замыкается не по сердечнику, а по воздуху. Эта часть потока носит название потока рассеивания Фр (рис. 1.11). Таким образом, полный поток, сцепленный с витками катушки равен
Самоиндукция
Представим себе любую электрическую цепь, параметры которой можно менять. Если мы изменим силу тока в этой цепи — например, подкрутим реостат или подключим другой источник тока — произойдет изменение магнитного поля. В результате этого изменения в цепи возникнет дополнительный индукционный ток за счет электромагнитной индукции, о которой мы говорили выше. Такое явление называется самоиндукцией, а возникающий при этом ток — током самоиндукции.
Формула магнитного потока для самоиндукции Ф = LI Ф — собственный магнитный поток L — индуктивность контура I — сила тока в контуре |
Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.
Самоиндукция — это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.
Самоиндукция чем-то напоминает инерцию: как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет самоиндукции.
Представим цепь, состоящую из двух одинаковых ламп, параллельно подключенных к источнику тока. Если мы последовательно со второй лампой включим в эту цепь катушку, то при замыкании цепи произойдет следующее:
- первая лампа загорится практически сразу,
- вторая лампа загорится с заметным запаздыванием.
При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки так часто перегорают при отключении света.
ЭДС самоиндукции
ξis — ЭДС самоиндукции ΔФ/Δt — скорость изменения магнитного потока [Вб/с] ΔI/Δt — скорость изменения силы тока в контуре [А/с] L — индуктивность |
Знак минуса в формуле закона электромагнитной индукции указывает на то, что ЭДС индукции препятствует изменению магнитного потока, который вызывает ЭДС. При решении расчетных задач знак минуса не учитывается.
Варианты измерения
Индуктивность катушки в физике определяется путём выполнения вычислений. Однако эту величину можно не только рассчитать, но и измерить. Делается это при помощи прямого или косвенного метода.
Прямой метод
Для измерения индуктивности катушки этим методом необходимо использовать специальные мостовые или прямопоказывающие устройства. С их помощью можно получить максимально точные данные, которые помогут выбрать требуемую катушку для схемы.
Порядок проведения измерений включает в себя следующие этапы:
- К прямопоказывающему приспособлению подключают катушку.
- После этого постепенно изменяют диапазоны измерений. Это делается до тех пор, пока получаемый результат не будет находиться примерно в середине интервала.
- Полученный результат фиксируют и высчитывают с учётом цены деления прибора, а также коэффициента, соответствующего положению переключателя.
Измерение выполняют путём проведения таких действий:
- Включённый мостовой прибор подсоединяют к катушке, индуктивность которой необходимо определить.
- Аналогично прямопоказывающему устройству проводят переключение интервалов измерений.
- После каждого такого действия ручку регулятора балансировки моста поочерёдно перемещают в одно и другое предельное положение.
- Как только удалось определить диапазон, в котором мост будет сбалансирован, можно выполнять дальнейшие действия.
- На следующем этапе измерений выполняется постепенное перемещение стрелочного индикатора.
- После того как в динамике прибора исчезнет звук, необходимо зафиксировать показатели.
- Затем их рассчитывают в соответствии с ценой деления шкалы и предусмотренным коэффициентом.
Косвенное определение
Для того чтобы измерить коэффициент самоиндукции, необходимо провести несколько подготовительных мероприятий. В первую очередь нужно собрать измерительную цепь по стандартной схеме, а также подготовить все необходимые приспособления (генератор синусоидального напряжения, частотомер, а также миллиамперметр и вольтметр, рассчитанные на переменный ток).
Порядок определения параметра:
- К выходу генератора параллельно подключают вольтметр. Он должен быть переключён в режим, при котором верхнее предельное значение будет соответствовать напряжению в 3−5 вольт.
- Аналогично подсоединяют и частотомер.
- Отдельно собирают вторую цепь. В ней последовательно соединяют миллиамперметр и катушку, индуктивность которой нужно определить.
- Затем обе цепи подключают параллельно друг к другу.
- Подключённый генератор устанавливают в режим выработки синусоидального напряжения.
- Путём изменения частоты добиваются такой работы приборов, при которой вольтметр будет показывать примерно 2 вольта. При этом сила тока на миллиамперметре будет постепенно уменьшаться.
- После этого ручку частотомера перемещают в положение, соответствующее частоте измерений.
- Как только эти действия будут выполнены, можно фиксировать значения.
Полученные данные переводятся в СИ, а затем выполняются все необходимые расчёты. Первым делом определяется индуктивное сопротивление. Для этого значения приборов подставляются в следующую зависимость: X=U/I, где U — напряжение, а I — сила тока. Результат расчётов будет выражен в омах.
После этого вычисляется индуктивность по формуле L=X/2 πF. В ней используются такие условные обозначения:
- X — индуктивное сопротивление;
- π — математическая постоянная (примерно 3,14);
- F — частота в герцах, при которой проводились измерения.
Индуктивность — это важный физический параметр, позволяющий определить магнитные свойства электроцепи. При точном его измерении и правильном проведении предусмотренных расчётов можно получить достоверные данные, которые понадобятся при выборе катушки.
Онлайн расчет многослойной катушки. Калькулятор считает по алгоритму с применением эллиптических интегралов Максвелла. Катушка индуктивности — винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Индуктивность катушки зависит от ее геометрических размеров, числа витков и способа намотки катушки. Чем больше диаметр, длина намотки и число витков катушки, тем больше ее индуктивность.
Что такое дроссель
Дроссель — это вид катушки индуктивности, которая оказывает высокое сопротивление переменному току и малое постоянному.
Применяется дроссель в следующих случаях:
- Защита устройств от резких скачков напряжения;
- Для уменьшения скорости увеличения тока короткого замыкания ;
- Уменьшения импульсных помех;
И это только перечислена маленькая часть того где применяются
дроссели.
Пример:
Давайте представим, что у нас стоит дроссель перед электродвигателем. И в какой-то момент происходит скачок тока, что происходит: Мы знаем, что в момент пропускания тока через дроссель, формируется электромагнитное поле вокруг катушки. А для формирования поля нам нужна энергия, поэтому в самом начале протекания тока он тратится на формирование электромагнитного поля. По закону Ленца, мы знаем, что ток в катушке не может измениться мгновенно. А явление самоиндукции при изменении тока, направлено навстречу основному току. Таким образом дроссель просто скушает скачок тока в сети.
Что такое катушка индуктивности
Данный элемент ещё называют дросселем. Это свёрнутый в спираль изолированный провод. Для такой спирали характерны большие индуктивные и маленькие ёмкостные параметры.
Важно! Дроссель препятствует протеканию переменного тока, потому что обладает существенной инерционностью. Она препятствует любому изменению проходящего через витки тока
При этом нет разницы, увеличивается он или уменьшается.
В связи с этим данные элементы применяют в электротехнике для осуществления:
- токоограничения;
- ослабления биений;
- помехоподавления;
- формирования магнитного поля;
- изготовления датчиков движения.
Дроссель входит в систему колебательного контура в цепях резонанса и применяется в линиях задержки.
Измерение емкостей
Определение емкости конденсатора или других устройств емкостного характера также может осуществляться различными способами. Простейший из них — метод амперметра-вольтметра (рис. 6, а).
Рис. 6. Схемы измерения емкости
Он во многом аналогичен такому же методу измерения сопротивлений, с той только разницей, что схема питается переменным синусоидальным напряжением от генератора низкой или высокой частоты (или от сети). Емкостное сопротивление конденсатора определяется по следующей формуле:
где f — частота переменного напряжения.
Емкостное сопротивление находится по закону Ома по показаниям приборов
Измерение малых по величине емкостей удобнее производить методом резонанса (рис. 6, б). Измеряемый конденсатор Сх подключается к известной индуктивности L, образуя колебательный контур. На контур подается синусоидальное напряжение от генератора. С помощью электронного вольтметра измеряют напряжение на контуре. При резонансе оно достигает максимума.
Известно, что резонансная частота контура может быть выражена следующей формулой:
Следовательно, при известной величине индуктивности в контуре и определенной по максимальным показаниям вольтметра частоте резонанса можно найти искомое значение емкости Сх.
Измерение больших емкостей (например, электролитических конденсаторов) проще всего производить путем разряда конденсатора на известное сопротивление R. Известно, что за время, равное постоянной времени цепи разряда конденсатора, его напряжение уменьшается в е раз, где е = 2,71… — основание натурального логарифма. Постоянная времени цепи разряда конденсатора на резистор определяется соотношением
Схема измерения емкости этим методом (рис. 6, в) состоит из источника постоянного напряжения питания, известного по величине сопротивления резистора R, электронного вольтметра PV, переключателя S и клемм для подключения конденсатора. С помощью переключателя S конденсатор Сх заряжается до напряжения источника питания, а после переключения конденсатора на разряд с помощью секундомера измеряют время t, по истечении которого конденсатор разрядится до напряжения Uпит/е. Емкость конденсатора определяется по формуле
Емкости конденсаторов можно измерять также с помощью мостов переменного тока.
Дроссель
Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель — это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.
Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:
Также существует еще один особый вид дросселей — это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.
Применение катушек в технике
Явление электромагнитной индукции известно уже давно и широко применяется в технике. Примеры использования:
- сглаживание пульсаций и помех, накопление энергии;
- создание магнитных полей в различных устройствах;
- фильтры цепей обратной связи;
- создание колебательных контуров;
- трансформаторы (устройство из двух катушек, связанных индуктивно);
- силовая электротехника использует для ограничения тока при к. з. на ЛЭП (катушки индуктивности, называются реакторами);
- ограничение тока в сварочных аппаратах — катушки индуктивности делают его работу стабильнее, уменьшая дугу, что позволяет получить ровный сварочный шов, имеющий наибольшую прочность;
- применение катушек в качестве электромагнитов различных исполнительных механизмов;
- обмотки электромагнитных реле;
- индукционные печи;
- установление качества железных руд, исследование горных пород при помощи определения магнитной проницаемости минералов.
Магнитное поле
Это словосочетание знакомо нам со школьной скамьи. Но многие уже забыли о том, что оно означает. Хотя каждый из нас помнит, что магнитное поле способно воздействовать на предметы, притягивая или отталкивая их. Но, помимо этого, у него есть и другие особенности: например, магнитное поле может воздействовать на электрически заряженные объекты, а это значит, что электричество и магнетизм тесно связаны между собой, и одно явление может плавно перетекать в другое. Учёные поняли это достаточно давно и поэтому стали называть все эти процессы вместе одним словом — «электромагнитные явления». На самом деле электромагнетизм — довольно интересная и ещё не до конца изученная область физики. Она очень обширна, и те знания, что мы можем здесь изложить вам, — это очень малая часть того, что известно человечеству о магнетизме сегодня.
А сейчас перейдём непосредственно к предмету нашей статьи. Следующий раздел будет посвящён рассмотрению непосредственно устройства катушки индуктивности.
Самоиндукция простых цепей в воздухе
Собственная индуктивность многих типов электрических цепей может быть указана в замкнутой форме или последовательно. Примеры приведены в таблице ниже.
Тип | Самоиндуктивность | Комментарий |
---|---|---|
Соленоид в одном слое |
μр2НЕТ23л-8ш+41+мм(K(м1+м)-(1-м)E(м1+м)){\ displaystyle {\ frac {\ mu _ {0} r ^ {2} N ^ {2}} {3l}} \ left }
знак равноμр2НЕТ2πл1-8ш3π+∑нетзнак равно1∞(2нет)!2нет!4(нет+1)(2нет-1)22нет(-1)нет+1ш2нет{\ displaystyle = {\ frac {\ mu _ {0} r ^ {2} N ^ {2} \ pi} {l}} \ left }знак равноμр2НЕТ2πл(1-8ш3π+ш22-ш44+5ш616-35 годш864+…){\ displaystyle = {\ frac {\ mu _ {0} r ^ {2} N ^ {2} \ pi} {l}} \ left (1 — {\ frac {8w} {3 \ pi}} + { \ frac {w ^ {2}} {2}} — {\ frac {w ^ {4}} {4}} + {\ frac {5w ^ {6}} {16}} — {\ frac {35w ^ {8}} {64}} + … \ вправо)}для w << 1 для w >> 1 |
НЕТ{\ displaystyle N} : количество витков : радиус : длина : эллиптический интегралр{\ displaystyle r}л{\ displaystyle l}шзнак равнорл{\ Displaystyle ш = г / л}мзнак равно4ш2{\ displaystyle m = 4w ^ {2}} E,K{\ displaystyle E, K} |
Коаксиальный кабель, высокочастотный | μл2πпер(в1в){\ displaystyle {\ frac {\ mu _ {0} l} {2 \ pi}} \ ln \ left ({\ frac {a_ {1}} {a}} \ right)} |
в1{\ displaystyle a_ {1}} : внешний радиус : внутренний радиус : длина в{\ displaystyle a}л{\ displaystyle l} |
Круговая петля | μр(пер(8рв)-2+Y2+О(в2р2)){\ displaystyle \ mu _ {0} r \ left (\ ln \ left ({\ frac {8r} {a}} \ right) -2 + {\ frac {Y} {2}} + O \ left ({ \ frac {a ^ {2}} {r ^ {2}}} \ right) \ right)} |
р{\ displaystyle r} : радиус петли : радиус проволоки в{\ displaystyle a} |
Прямоугольник |
μπ(бпер(2бв)+dпер(2dв)-(б+d)(2-Y2)+2б2+d2){\ displaystyle {\ frac {\ mu _ {0}} {\ pi}} \ left (b \ ln \ left ({\ frac {2b} {a}} \ right) + d \ ln \ left ({\ frac {2d} {a}} \ right) — \ left (b + d \ right) \ left (2 — {\ frac {Y} {2}} \ right) +2 {\ sqrt {b ^ {2} + d ^ {2}}} \ right)}
-μπ(б⋅арсин(бd)+d⋅арсин(dб)+О(в)){\ displaystyle \; \; — {\ frac {\ mu _ {0}} {\ pi}} \ left (b \ cdot \ operatorname {arsinh} \ left ({\ frac {b} {d}} \ right ) + d \ cdot \ operatorname {arsinh} \ left ({\ frac {d} {b}} \ right) + O \ left (a \ right) \ right)} |
б,d{\ displaystyle b, d} : Периметр , : радиус провода d≫в{\ displaystyle d \ gg a}б≫в{\ displaystyle b \ gg a} в{\ displaystyle a} |
Два параллельных провода |
μлπ(пер(dв)+Y2){\ displaystyle {\ frac {\ mu _ {0} l} {\ pi}} \ left (\ ln \ left ({\ frac {d} {a}} \ right) + {\ frac {Y} {2 }} \ верно)} |
в{\ displaystyle a} : радиус провода : расстояние ,: длина пары проводов d{\ displaystyle d}d≥2в{\ displaystyle d \ geq 2a} л{\ displaystyle l} |
Два параллельных провода , высокая частота | μлπаркош(d2в)знак равноμлπпер(d2в+d24в2-1){\ displaystyle {\ frac {\ mu _ {0} l} {\ pi}} \ operatorname {arcosh} \ left ({\ frac {d} {2a}} \ right) = {\ frac {\ mu _ { 0} l} {\ pi}} \ ln \ left ({\ frac {d} {2a}} + {\ sqrt {{\ frac {d ^ {2}} {4a ^ {2}}} — 1} } \ верно)} |
в{\ displaystyle a} : радиус провода : расстояние ,: длина пары проводов d{\ displaystyle d}d≥2в{\ displaystyle d \ geq 2a} л{\ displaystyle l} |
Провод параллельно идеальному проводнику | μл2π(пер(2dв)+Y2){\ displaystyle {\ frac {\ mu _ {0} l} {2 \ pi}} \ left (\ ln \ left ({\ frac {2d} {a}} \ right) + {\ frac {Y} { 2}} \ right)} |
в{\ displaystyle a} : радиус провода : расстояние ,: длина d{\ displaystyle d}d≥в{\ displaystyle d \ geq a} л{\ displaystyle l} |
Провод параллельно идеальному проводнику, высокая частота | μл2πаркош(dв)знак равноμл2πпер(dв+d2в2-1){\ displaystyle {\ frac {\ mu _ {0} l} {2 \ pi}} \ operatorname {arcosh} \ left ({\ frac {d} {a}} \ right) = {\ frac {\ mu _ {0} l} {2 \ pi}} \ ln \ left ({\ frac {d} {a}} + {\ sqrt {{\ frac {d ^ {2}} {a ^ {2}}} — 1}} \ right)} |
в{\ displaystyle a} : радиус провода : расстояние ,: длина d{\ displaystyle d}d≥в{\ displaystyle d \ geq a}л{\ displaystyle l} |
Символ — магнитная постоянная (4π × 10 −7 Гн м −1 ). Для высоких частот электрический ток течет по поверхности проводника ( скин-эффект ), и, в зависимости от геометрии, необходимо различать индукторы низкой и высокой частоты. Это цель константы :
μ{\ displaystyle \ mu _ {0}} Y{\ displaystyle Y}
- Yзнак равно12{\ displaystyle Y = 1/2} при равномерном распределении тока по сечению провода (на низкой частоте);
- Yзнак равно{\ displaystyle Y = 0} когда ток равномерно распределяется по поверхности провода (высокочастотный скин-эффект).
В случае высокой частоты, если проводники приближаются друг к другу, на их поверхности индуцируются дополнительные токи, и выражения, содержащие Y, становятся недействительными.