Нейтральная точка: что это такое, особенности, примеры

Диэдральные или торсионные углы

Название пугающее, но сейчас как устроим этим углам! Так, мы уже говорили о том, что вокруг пептидной связи не повращаться из-за того, что она частично двойная. Но ведь есть и другие связи, вокруг которых можно устроить веселуху.

Нейтральная точка: что это такое, особенности, примерыВращение вокруг связей

Понимаю, что представить это не так уж и легко, но можно попробовать сделать! Получится конечно не совсем так, но принцип поймем. Возьмем ручку и два колпачка, засунем бумажку под каждый колпачок и начнем крутить. Условимся, что мои пальцы — альфа-углеродный атом, то есть место пересечения двух плоскостей.

  • И вращаем!
  • Вращаем

Теперь мы поняли, как происходит вращение, но это еще не все. Существуют определенные углы между плоскостями и всего их два. Представьте, что нам захочется найти угол между углеродами, у которых карбоксильная группа, двух плоскостей. Или угол между двумя атомами азота, опять же, двух разных плоскостей. Задачка кажется сложной… Но перед этим, а зачем я вообще мучаю вас этим? Дело в том, что когда мы дойдем до конформации белковых молекул, то благодаря этим углам мы поймем: как и почему образуется альфа-спираль, тоже самое с бета-складчатостью. Так что потерпите немного!

Нейтральная точка: что это такое, особенности, примерыУглы между атомами в пептидах

Если посмотреть на эту схему, то можно кое-что прикинуть: если мы будем вращать связь между N и C, то углерод с карбоксильной группой изменит положение относительно углерода другой плоскости, а вот азот останется на том же месте — угол между двумя азотами не изменится. А вот если начнем вращать связь между C и C, то все будет наоборот: угол между азотами изменится, но вот углероды с карбоксильной группой останутся на месте. Сложновато, но чуть дальше я дам пространственную картинку. Пока что мы пришли к выводу, что связь между N и C влияет на угол между углеродами — этот угол называется фи. А вот связь между C и C влияет на угол между атомами азота — угол пси.

Теперь можно и добавить атомы водорода в схему, они скоро нам понадобятся.

Нейтральная точка: что это такое, особенности, примерыФи и пси углы

Добавим реалистичности, центральным радикалом у нас будет -CH3, а остальные радикалы уберем.

Нейтральная точка: что это такое, особенности, примерыТорсионные углы в пептидах. Первая картинка с https://proteopedia.org/wiki/index.php/Tutorial:Ramachandran_principle_and_phi_psi_angles

А теперь главный вопрос — как измерить эти углы? Хорошо, что уже это придумали… И мы можем сделать это вместе — заходите сюда и поехали! Первым делом нам нужно перевернуть молекулу так, чтобы расположить атом углерода с карбоксильной группой сверху. Зачем такие выкрутасы? Расскажу позже. А теперь посмотрим прямо в альфа атом углерода, да так что за ним спрятался азот. Как-то это странно звучит, но давайте попробуем.

Еще это можно посмотреть графически с помощью проекций Ньюмана.

Нейтральная точка: что это такое, особенности, примерыПроекция Ньюмана

Так, повторим что такое угол фи — это угол между двумя карбоксильными атомами углерода. На рисунке уже их видно.

Нейтральная точка: что это такое, особенности, примерыУгол фи — 165 градусов

Поняли зачем так крутили молекулу? Да, просто так нам удобнее смотреть угол. А теперь начнем вращать и посмотрим как меняются углы.

Нейтральная точка: что это такое, особенности, примерыИзменение углов фи при вращении вокруг связи

Угол пси по такой же логике. Крутим молекулу, чтобы атом азота оказался сверху и смотрим прямо в альфа атом углерода.

Еще разок построим проекцию Ньюмана, она немного отличается, и сразу же отметим углы.

Нейтральная точка: что это такое, особенности, примерыТорсионный угол пси

Думаю, что принцип понятен. Дальше можете покрутить сами, правильно? Я не сказал про одно большое «НО» — не каждый угол возможен, так как у атомов есть, которые заряжены отрицательно. Если электронные оболочки подходят слишком близко, то они отталкиваются и угол меняется. Какие углы возможны? Для этого еще разок зайдите сюда и включите на панельке справа силы Ван-дер-Вальса и show clashes.

Подробнее о влиянии этих углов в следующей статье.

Хочешь задать вопрос, похвалить или наговорить гадостей? Тогда залетай в телегу. Там ты сможешь предложить новый формат или разбор темы. А если серьёзно, то эти статьи пишутся для вас, поэтому мне важна обратная связь.

АминокислоткиСкачать

Замыкание на корпус

Замыкание на корпус в системе TN-C-S — исходя из определения системы TN-C-S, электрически то же самое, что и короткое замыкание между фазой и нулём. Сопротивление петли фаза-ноль должно быть таким, чтобы гарантированно вызвать сработку электромагнитного расцепителя АВ для его почти мгновенного отключения. Для АВ характеристики «C», для сработки электромагнитного расцепителя ток должен превысить номинал не менее, чем в 10 раз.

Согласно ПУЭ, п.1.7.79, в системе TN при коротком замыкании на корпус, групповой АВ должен отключаться не более, чем за 0,4 с. Это значение считается достаточными для обеспечения электробезопасности при косвенном прикосновении.

Такое время может дать только электромагнитный расцепитель автоматического выключателя. В том же пункте указано, что в цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с. Это время тепловой расцепитель тоже не всегда может выдать, и надежда опять же только на электромагнитный расцепитель.

Расчёт АВ (характеристика С) обычно такой: его номинал умножают на 10 (это кратность сработки электромагнитного расцепителя) и на 1,1. Например, чтобы АВ С16 отключился за положенное время, ток КЗ должен достичь 16 * 10 * 1,1 = 176А. А для этого сопротивление петли фаза-ноль должно быть не более 230 / 176 = 1,3 Ома.

Популярные статьи  Токовая защита линий

В грамотно построенной системе так и есть. Но если электропроводка рассчитана неправильно и сечение проводов заужено, то сопротивление петли возрастает, что может привести к несработке электромагнитного расцепителя. Тепловой расцепитель может задуматься на несколько десятков секунд, в течение которых проводка может разогреться, и ещё более увеличить своё сопротивление и дальнейший разогрев вплоть до самовоспламенения.

Замыкание на корпус в системе TT — очень опасное явление, потому что редко когда сопротивление растеканию электрического тока собственного контура заземления достигает требуемых для сработки электромагнитного расцепителя величин. Именно поэтому в системах TT использование УДТ (УЗО, дифавтомата) обязательно. Вся защита от косвенного прикосновения в этой системе полностью ложиться на УДТ.

Если УДТ вдруг не сработает по утечке, то тепловой расцепитель АВ будет греться несколько десятков секунд, прежде чем должен будет сработать. Но поскольку разогретый за это время кабель ещё повысит своё сопротивление, то ток цепи уменьшится и время отключения АВ ещё больше увеличится. Это в итоге может привести к воспламенению кабеля.

Кроме того, пока тепловой расцепитель не сработал, на корпусах приборов будет висеть потенциал, причём это будет более высокий потенциал, чем при замыкании на нейтраль.

Общее назначение нулевого провода в обмотках трансформатора

Нейтральная точка: что это такое, особенности, примеры

Нейтраль – это общая, нулевая точка соединение проводника в трехфазных трансформаторах или генераторах. На текущий момент существует 4 основных разновидности присоединения нулевой точки:

  1. Изолированная. Этот тип характеризуется отсутствием нейтрали. Основной схемой соединения для представленной сети является треугольник. При однофазных замыканиях на землю на рабочих фазах не чувствуют изменений в энергопотреблении. Подобная разновидность применяется в распределительных сетях 6-35 кВ.
  2. Резонансно-заземленная. Указанный вариант предполагает использование заземления нулевой точки обмоток трансформатора или генератора через дугогасящие катушки или реакторы (ДГК, ДГР). Наличие специализированного оборудования компенсирует повышающийся уровень тока, позволяя избежать более сложных, межфазных повреждений.
  3. Глухозаземленная. Самый распространенный тип нейтрали, который используется в сетях бытового потребления. Обмотка трансформаторов по низкой стороне выполняется соединением разомкнутая звезда, а нулевая точка заземляется через контур заземления трансформатора или трансформаторной подстанции. При повреждениях на линии или возникновении однофазного замыкания создается потенциал относительно земли, что приводит в действие защиту, отключающую линию.
  4. Эффективно-заземленная. Разновидность заземленной нейтрали, которая используется в высоковольтных сетях 110 кВ и выше. Нулевая точка силовых трансформаторов и потенциал замыкания выносится на землю. Для повышения эффективности работы защит используется дополнительное оборудование заземлитель нейтрали одноколонковый (ЗОН). Положение коммутационного аппарата определяется режимными указаниями. Для распределительных сетей 6-35 кВ используется заземление через низкоомный резистор.

Типы систем заземления

Вы замечали, что нулевой провод в трёхфазном кабеле имеет меньшее сечение, чем остальные? Это вполне объяснимо, ведь на него ложится не вся нагрузка, а только разница токов между фазами. Хотя бы один контур заземления в сети должен быть, и обычно он находится рядом с источником тока: трансформатор на подстанции. Здесь система требует обязательного зануления, но при этом нулевой проводник перестаёт быть защитным: что бывает, если в ТП «отгорел ноль», знакомо многим. По этой причине заземляющих контуров по всей протяжённости ЛЭП может быть несколько, и обычно так оно и есть.

Конечно, повторное зануление, в отличие от заземления, вовсе не обязательно, но зачастую крайне полезно. По тому, в каком месте выполняется общее и повторные зануления трехфазной сети, различают несколько типов систем.

Разница между заземлением и занулением

В системах под названием I-T или T-T защитный проводник всегда берётся независимо от источника. Для этого у потребителя устраивается собственный контур. Даже если источник имеет свою точку заземления, к которой подключен нулевой проводник, защитной функции последний не имеет. Он с защитным контуром потребителя никак не контактирует.

Системы без заземления на стороне потребителя более распространены. В них защитный проводник передаётся от источника потребителю, в том числе и посредством нулевого провода. Обозначаются такие схемы приставкой TN и одним из трёх постфиксов:

  1. TN-C: защитный и нулевой проводник совмещены, все заземляющие контакты на розетках подключаются к нулевому проводу.
  2. TN-S: защитный и нулевой проводник нигде не контактируют, но могут подключаться к одному и тому же контуру.
  3. TN-C-S: защитный проводник следует от самого источника тока, но там всё равно соединяется с нулевым проводом.

Ключевые моменты электромонтажа

Итак, чем вся эта информация может быть полезна на практике? Схемы с собственным заземлением потребителя, естественно, предпочтительны, но иногда их технически невозможно реализовать. Например, в квартирах высоток или на скальном грунте. Вы должны знать, что при совмещении нулевого и защитного проводника в одном проводе (называемом PEN) безопасность людей не ставится в приоритет. А потому оборудование, с которым контактируют люди, должно иметь дифференциальную защиту.

И здесь начинающие монтажники допускают целый ворох ошибок. Неправильно определяя тип системы заземления/зануления и, соответственно, неверно подключают УЗО. В системах с совмещённым проводником УЗО может устанавливаться в любой точке, но обязательно после места совмещения. Эта ошибка часто возникает в работе с системами TN-C и TN-C-S. А особенно часто, если в таких системах нулевой и защитный проводники не имеют соответствующей маркировки.

Разница между заземлением и занулением

Поэтому никогда не используйте жёлто-зелёные провода там, где в этом нет необходимости. Всегда заземляйте металлические шкафы и корпуса оборудования, но только не совмещённым PEN-проводником. На нём при обрыве нуля возникает опасный потенциал. Это необходимо делать защитным проводом PE, который подключается к собственному контуру.

Кстати, при наличии собственного контура на него выполнять незащищённое зануление очень и очень не рекомендуется. Если только это не контур вашей собственной подстанции или генератора. Дело в том, что при обрыве нуля вся разница асинхронной нагрузки в общегородской сети проследует в землю через ваш контур, раскаляя соединяющий провод.

Популярные статьи  Проводники и диэлектрики

Защитное заземление. Чем опасно самостоятельное выполнение заземления?

Принцип работы заземления для зданий по системе ТN-C, TN-S и TN-C-S.

Заземление дома. Монтаж контура заземления!

Контур заземления. Заземление и зануление на объектах.

Будем рады, если подпишетесь на наш Блог!

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Нейтральная точка: что это такое, особенности, примерыПример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Заземление и зануление

Из-за того, что технологическая нейтраль обмоток трансформатора заземляется, существует путаница в применение проводников N и PE.

Правила устройства электроустановок четко определяют, что технологическую нейтраль – провод N – можно подключать к корпусам электроприборов только в трехфазной сети. Именно в этом случае по нему не течет ток и потому он называется нулевым проводником, а способ его подключения занулением.

При питании однофазных потребителей по проводу N течет ток. Поэтому его категорически нельзя подключать к корпусу электроприбора. Во-первых, это опасно из-за возможности поражения людей электрическим током. Во-вторых, питание на потребителя не будет подано, поскольку между его схемой и корпусом нет электрической связи.

Аналогичной ошибкой является подключение к клемме N АВДТ или УЗО защитного проводника PE. Если PE подключен к входу и выходу, то защита не будет срабатывать. А при разноименной коммутации, например, провод N на входе, а PE на выходе, будет, наоборот, происходить постоянное отключение.

Глухозаземленная нейтраль не является гарантированной защитой от поражения людей электрическим током. Она только снижает тяжесть последствий. Поэтому соблюдение правил электробезопасности в любом случае обязательно.

Какова опасность двухфазного прикосновения?

Под двухфазным прикосновением понимается одновременное прикосновение к двум фазам электроустановки, находящейся под напряжением (рис. 1).

Рис. 1. Схема двухфазного прикосновения человека к сети переменного тока

Двухфазное прикосновение более опасно. При двухфазном прикосновении ток, проходящий через тело человека по одному из самых опасных для организма путей (рука—рука), будет зависеть от прикладываемого к телу человека напряжения, равного линейному напряжению сети, а также от сопротивления тела человека:

где

  • Uл — линейное напряжение, т. е. напряжение между фазными проводами сети;
  • Rчел — сопротивление тела человека.

В сети с линейным напряжением Uл = 380 В при сопротивлении тела человека Rчел = 1000 Ом ток, проходящий через тело человека, будет равен:

Этот ток для человека смертельно опасен. При двухфазном прикосновении ток, проходящий через тело человека, практически не зависит от режима нейтрали сети. Следовательно, двухфазное прикосновение одинаково опасно как в сети с изолированной, так и с заземленной нейтралью (при условии равенства линейных напряжений этих сетей).

Случаи прикосновения человека к двум фазам происходят сравнительно редко.

Эффективно-заземлённая нейтраль | Электротехнический журнал

Эффективно-заземлённая нейтраль (трех-фазной электроустановки) — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.

Термин «глухозаземлённая нейтраль» в сетях выше 1000В в данный момент не применяется. Электроустановки, в которых нейтраль соединяется с заземляющим устройством непосредственно, также относятся к электроустановкам с эффективно-заземлённой нейтралью.

Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.

Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза

Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление

В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше.

Недостатки

  • Возникновение больших токов короткого замыкания (ТКЗ) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
  • Удорожание сооружения контура заземления, способного отводить большие токи к.з.
  • Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.
Популярные статьи  Как лучше подключить шуруповерт: к блоку питания напрямую или к зарядному устройству?

Особенности выполнения эффективно заземлённой нейтрали

Согласно ПТЭЭП максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.

Примечания

  1. ПУЭ — правила устройства электроустановок, издание 6-е и 7-е.
  2. ПТЭЭП — правила технической эксплуатации электроустановок потребителей.

Просмотров всего: 135, Просмотров за день: 1

  • Эффективно заземленная нейтраль и глухозаземленная отличия
  • Испытания кабеля из сшитого полиэтилена 10 кв
  • Испытания кабеля из сшитого полиэтилена 10 кв
  • Плюсы и минусы тэц
  • Плюсы и минусы тэц
  • Разъединитель шинный 10 кв
  • Разъединитель шинный 10 кв
  • Разъединитель рндз
  • Разъединитель рндз
  • Протокол испытания кабеля сшитого полиэтилена

  • Протокол испытания кабеля сшитого полиэтилена

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
  • I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ).

    Схема заземления ТТ

  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются.

    Схема заземления TN-С

  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации.

    Схема заземления TN-S

  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена.

    Схема заземления TN-C-S

Что такое системы TN

TN будут называться системы с использованием глухозаземленной нейтрали для подключения защитных и нулевых функциональных проводников. Важный момент — в таких системах к нулевому проводнику, в свою очередь соединенному с нейтралью, должны быть подключены все корпусные электропроводящие детали.

Такая система отличается подключением нейтрали к контуру заземления вблизи трансформаторной подстанции. Нейтраль в этом случае не заземляется с помощью дугогасящего реактора.

На предприятиях промышленного типа наиболее целесообразными являются четырехпроводные трехфазные сети с глухозаземленной нейтралью напряжением 380/220 В со вторичной обмоткой, объединенной в звезду и наглухо соединенной нейтральной точкой с устройством для заземления.

Двигатели при подключении к фазам сети питаются при линейном напряжении, источником питания ламп является фазное напряжение при подключении их между нейтральными и фазными проводами. N -проводу отводится сразу две роли — он является рабочим, необходимым для присоединения однофазных приемников, и проводом зануления с присоединенными металлическими корпусами установок, которые не находятся под нормальным напряжением.

Зануление пробоя изоляции обмотки двигателя приведет к появлению большого тока короткого замыкания и срабатыванию механизма защиты, в результате чего двигатель будет отключен от сети. В случае отсутствия зануления корпуса двигателя повреждение изоляции обмотки приведет к созданию опасной ситуации на корпусе касательно земли.

В случае однофазного КЗ на землю относительно нее напряжения на целых фазах остается прежним, поэтому изоляция может быть устроена с уклоном не на линейное, а на фазное напряжение.

Главным преимуществом ее использования является возможность предотвращения воспламенения электропроводки за счет автоматического отключения поврежденного участка от сети. Кроме того, в случае короткого замыкания между нейтральным проводом и поврежденной фазой и соответственно увеличивающимся током срабатывают токовые реле, опасность поражения сводится к минимуму.

Оцените статью
( Пока оценок нет )
Добавить комментарий