Микропроцессорные устройства релейной защиты: обзор возможностей и спорных вопросов

МИКРОПРОЦЕССОРНЫЕ УСТРОЙСТВА РЕЛЕЙНОЙ ЗАЩИТЫ

В настоящее время большинство фирм-производителей устройств релейной защиты и электроавтоматики (РЗА) прекращает выпуск электромеханических реле и переходит на микропроцессорную элементную базу. Это объясняется следующими достоинствами микропроцессорных устройств.

1. Элементная база (промежуточные трансформаторы, электронная часть, выходные устройства) у большинства устройств РЗА получается практически одинаковой. Отличие заключается в программном обеспечении.

2. В силу идентичности устройства комплектов различного назначения, достигается высокая степень автоматизации производства с минимальной долей ручного труда.

3. Микропроцессорные устройства РЗА органически входят в автоматизированную систему управления технологическим процессом (АСУ ТП) электрической части сетей и систем и обеспечивают высокую степень информатизации электроэнергетических процессов. В конечном счете это (со временем) должно повысить надежность электроэнергетических сетей и систем.

4. Микропроцессорные устройства являются интеллектуальными системами, обладающими возможностью совершенствования путем изменения программного обеспечения и использования более перспективных принципов выполнения (алгоритмов) защиты. Изменение алгоритмов и программ возможно осуществлять в ходе эксплуатации.

5. Эти устройства не требуют использования мощных ТТ и ТН, т. к. их потребление по цепям тока и напряжения крайне мало (единицы вольт и миллиамперы).

Широкое внедрение микропроцессорных устройств сдерживается их высокой стоимостью и практически отсутствием в России производства микропроцессорной техники. Однако это явление временное и в перспективе микропроцессорная техника в РЗА альтернативы не имеет (другие устройства с нею со временем будут неконкурентоспособны).

Центральным элементом рассматриваемых устройств является микропроцессор — однокристальная электронно-вычислительная машина (ЭВМ) с оперативным (ОЗУ) и постоянным (ПЗУ) запоминающими устройствами, таймером, устройствами ввода и вывода.

Структурная схема устройств защиты линии приведена на рис. 1.

Рисунок 1. Упрощенная структура микропроцессорного устройства релейной защиты линии 6-10 кВ

Устройство подразделяется на аналоговую и цифровую части. В состав аналоговой части входят преобразователи «ток — напряжение» (промежуточные трансформаторы тока i/u), «напряжение — напряжение» (промежуточные трансформаторы напряжения u/u) и коммутатор аналоговых сигналов (мультиплексор МПл). Входным элементом цифровой части является аналогово-цифровой преобразователь (АЦП). Выходные сигналы (в цифровой форме) АЦП подаются на входы портов ввода-вывода (ПВВ) микропроцессора. Благодаря мультиплексору удается с помощью одного достаточно дорогостоящего АЦП последовательно осуществлять преобразование нескольких аналоговых сигналов в цифровую форму.

Арифметико-логическое устройство (АЛУ) микропроцессора по программе, заложенной в постоянное запоминающее устройство (ПЗУ), с участием оперативного запоминающего устройства (ОЗУ) производит обработку информации и принимает решение о необходимости отключения защищаемой линии.

Если такая необходимость есть, то срабатывают одно или несколько выходных реле из их комплекта (КВР), через контакты которых подается сигнал на отключение выключателя Q.

Данные о срабатывании выходных реле, параметрах срабатывания устройства защиты и др. могут быть выданы для персонала на жидкокристаллический индикатор (ЖКИ). Требуемая информация может быть передана в АСУ ТП с помощью интерфейса RS232 или RS485. Коррекция программ, заложенных в ПЗУ, и настройка устройства может производиться с помощью клавиатуры (КЛ). Электропитание устройства осуществляется с помощью блока питания (БП).

Характеристики микропроцессорных устройств релейной защиты во многом повторяют характеристики аналогичных устройств, выполненных на электромеханической или электронной элементной базе.

В настоящее время серийно выпускаются устройства типов «Сириус» (НПФ «Радиус», г. Зеленоград), БМРЗ (г. Санкт-Петербург), SPAC (ABB) и др. Они выполняют функции защит линий 6-10 кВ, электродвигателей напряжением выше 1 кВ и др.

Уставки по току задаются при программировании БМРЗФКС

-защиту минимального напряжения (ЗМН);

Популярные статьи  Вентиляторы для электротехнических шкафов

-квазитепловую защиту фидера;

-резервирование при отказах выключателя (УРОВ);

-логическую защиту шин (ЛЗШ);

-двукратное автоматическое повторное включение (АПВ);

-защиту смежного фидера контактной сети (токовая отсечка и вторая ступень ДЗ).

Для защиты фидеров ДПР были применены БМРЗ-ФПЭ, позволившие осуществить:

-токовую отсечку; трехступенчатую МТЗ, причем первые две ступени имеют независимую выдержку времени, а выдержка времени третьей ступени может быть как зависимой, так и независимой на выбор;

— защиту минимального напряжения;

-УРОВ;

-логическую защиту шин;

-двукратное АПВ.

Другие защиты, входящие в МТ БМРЗФПЭ (защита нулевой последовательности и т.д.), не используются.

На выключателях вводов 27,5 кВ использованы МТ БМРЗФВВ, содержащие в себе:

-двухступенчатую МТЗ с блокировкой по напряжению;

-две ступени ДЗ («замочная скважина»);

-защиту минимального напряжения;

—УРОВ с возможностью включения выходного реле в цепи РЗА защит высокой стороны на пряжения силового трансформатора;

-логическую защиту шин;

-защиту от подпитки коротких замыканий на стороне высокого напряжения от смежных подстанций через контактную сеть.

ТСН подстанции защищены МТ БМРЗ-ТСН

Они включают:

—токовую отсечку;

-двухступенчатую МТЗ;

-защиту минимального напряжения;

—УРОВ;

-логическую защиту шин.

Все БМРЗ осуществляют осциллографирование аварийных режимов и моментов запуска защит. Считывание осциллограмм возможно через порт RS232 с помощью портативного компьютера илипосредством шины RS485 со щита управления подстанцией. Последний оборудован контроллером подстанции (микроРС) с сенсорным дисплеем и модемом для подключения к линия ТУ/ТС систем телемеханики «ЛИСНА» или АСТМУ.

Кроме того, распредустройство 27,5 кВ оборудовано защитой от замыканий внутри ЗРУ, воздействующей на все присоединения стороны тягового напряжения.

Применение МТ БМРЗ в качестве защит присоединений тяговых подстанций переменного тока привело к необходимости усовершенствовать методику расчета уставок некоторых присоединений. Вчастности, приходится учитывать, что при повреждениях на линиях ДПР осуществляется запуск дистанционных защит вводов тягового напряжения.

Первый год эксплуатации устройств подтвердили преимущества использования МТ, а именно:

-более высокое быстродействие защит, обеспечившее возможность снижения временной ступени до 0,3 с, а в некоторых случаях до 0,25 с точность и стабильность значений уставок защит;

-глубокое резервирование защит, в особенности фидеров контактной сети, ранее не имевших реального резерва;

-повышение селективности работы устройств РЗА;

-удобство эксплуатации;

Шкафы РЗА

Современные микропроцессорные устройства РЗА выполняют не только свою прямые задачи защиты, но и другие смежные функции. Таким образом, сегодня большое количество устройств можно укомплектовать в одном шкафу, что значительно упрощает монтаж оборудования, непосредственную эксплуатацию, а также значительно освобождает пространство.

Типовые шкафы защиты имеют еще ряд дополнительных преимуществ: так как шкафы выполняются по стандартным схемам, проверенным в эксплуатации, вероятность ошибок в работе значительно снижается, а удобство в наладке и монтаже возрастает. Узнайте еще больше о РЗА и типовых решениях на нашем сайте.

Новости ›› Защита и автоматика асинхронных двухскоростных электродвигателей 6-10кВ

НТЦ «Механотроника» успешно завершил испытания блока защиты и автоматики асинхронных двухскоростных электродвигателей 6-10кВ — БМРЗ-ДВА.

Выпуск блока БМРЗ-ДВА завершил перевод номенклатуры решений по защите электродвигателей среднего напряжения на новую современную аппаратную платформу, удовлетворяющую актуальным техническим требованиям. Блок обеспечивает защиту двухскоростного двигателя с двумя выключателями, при этом вся логика переключения скоростей реализуется внутри блока. Такое решение позволяет существенно сократить количество дискретных связей между ячейками, что в конечном итоге ведет к удешевлению схемы защиты и повышению её надежности.

Принципы построения релейной защиты

Существует несколько видов реле, каждый из которых соответствует характеристикам электроэнергии (в данном случае – реле тока, напряжения, частоты, мощности и т.д.). Такая система отслеживает несколько показателей, выполняя непрерывное сравнение величин с ранее определенными диапазонами, которые называются уставки.

Популярные статьи  Гелевый аккумулятор

Микропроцессорные устройства релейной защиты: обзор возможностей и спорных вопросовВ том случае, когда контролируемая величина превышает установленную норму, соответствующее реле срабатывает: тем самым осуществляя коммутацию цепи путем переключения контактов. В первую очередь, такие действия касаются подключенной логической части цепи. В соответствии с выполняемыми задачами эта логика настраивается на определенный алгоритм действий, оказывающих влияние на коммутационную аппаратуру. Возникшая неисправность окончательно ликвидируется силовым выключателем, прерывающим питание аварийной схемы. В любой релейной защите и автоматике настройка измерительного органа выполняется с учетом определенной уставки, разграничивающей зону охвата и срабатывания защитных устройств. Сюда может входить только один участков или сразу несколько, состоящих из основного и резервных.Реакция защиты может проявляться на все повреждения, которые могут возникнуть в защищаемой зоне или только на отдельно взятые отклонения от нормального режима работы.

В связи с этим, защищаемый участок оснащен не одной защитой, а сразу несколькими, дополняющими и резервирующими друг друга. Основные защиты должны воздействовать на все неисправности, возникающие в рабочей зоне или охватывать их значительную часть. Они обеспечивают полную защиту всего участка, находящегося под контролем и должны очень быстро срабатывать при возникновении неисправностей. Все остальные защиты, не подходящие под основные условия, считаются резервными, выполняющими ближнее и дальнее резервирование. В первом случае резервируются основные защиты, работающие в закрепленной зоне. Второй вариант дополняет первый и резервирует смежные рабочие зоны на случай отказа их собственных защит. 

Достоинства

Функциональность:

  • Полный набор функций релейной защиты всех типов первичного оборудования ПС 110/35-(10)6 кВ и автоматики управления коммутационными аппаратами, в т.ч. цифровых ПС (поддержка МЭК 61850; Сертифицировано KEMA).
  • Максимальная насыщенность в одном устройстве.

Совместимость:

  • Практически полная совместимость со всей серией ТОР 200 (2006-2016 года выпуска).
  • Малая монтажная глубина 160 мм (актуально для новых ячеек).

Гибкость:

  • Свободно конфигурируемая логика для адаптации под особенности проекта и создания нетиповых исполнений.
  • Свободное назначение дискретных входов/выходов, светодиодов и кнопок.
  • Питание устройства от USB-порта (параметрирование, считывание данных).

Надежность:

  • Средняя наработка на отказ – не менее 125 000ч.
  • Среднее время восстановления работоспособного состояния – не более 0,5 ч.
  • Полный средний срок службы – 25 лет.
  • Гарантия на устройство – 10 лет.

Определение понятия Релейная защита

Релейная защита (РЗ)- это важнейший вид электрической автоматики, которая необходима для обеспечения бесперебойной работы энергосистемы, предотвращении повреждения силового оборудования, либо минимизации последствий при повреждениях. РЗ представляет собой комплекс автоматических устройств, которые при аварийной ситуации выявляют неисправный участок и отключают данный элемент от энергосистемы.

Во время работы РЗ постоянно контролирует защищаемые элементы, чтобы своевременно зафиксировать возникшее повреждение (или отклонение в работе энергосистемы) и должным образом отреагировать на случившееся.

При аварийных ситуациях релейная защита должна выявить и выделить неисправный участок, воздействуя на силовые коммутационные аппараты, предназначенные для размыкания токов повреждения (короткого замыкания, замыкания на землю и т.д.).

Релейная защита сопряжена с иными видами электрической автоматики, которые позволяют сохранять бесперебойную работы энергосистемы и электроснабжения потребителей.

На данный момент отрасль релейной защиты активно развивается и расширяется, уже сейчас используется микропроцессорная аппаратура и компьютерные программы не только для защиты, но и для комплексного управления оборудованием и системой в целом.

Серия «Сириус-3»

Микропроцессорные устройства защиты, автоматика, управления и сигнализации для сетей 110-220кВ с эффективно заземленной нейтралью

Сириус-3-ЛВ-03 Микропроцессорное устройство защиты (дистанционные и токовые защиты линий 110–220 кВ с функцией управления выключателем)Сириус-3-ЛВ-02 Микропроцессорное устройство защиты (дистанционные и токовые защиты линий 110–220 кВ без функции управления выключателем, аналог ШДЭ-2801)

Популярные статьи  Как перемотать электродвигатель в домашних условиях

Сириус-3-СВ Микропроцессорное устройство защиты и управления секционным выключателем

Сириус-3-ГС Микропроцессорное устройство защиты статорных цепей генераторов малой и средней мощности

Сириус-3-УВ Микропроцессорное устройство управления, автоматики и сигнализации высоковольтного выключателя 110-220 кВ, а также резервных защит силового трансформатора или подменных защит воздушной линии.

Сириус-3-ДЗО-01 Микропроцессорное устройство защиты ошиновки 35-220 кВ

Сириус-3-ДЗШ-01 Микропроцессорное устройство защиты для реализации функций основной защиты, автоматики и сигнализации систем сборных шин напряжением 35–220 кВ с фиксированным или изменяемым присоединением элементов, с числом присоединений до 16.

Сириус-3-ДЗШ-02 Микропроцессорное устройство защиты для реализации функций основной защиты, автоматики и сигнализации систем сборных шин напряжением 35–220 кВ с фиксированным или изменяемым присоединением элементов, с числом присоединений до 12. Предусмотрено подключение к ТН двух секций для реализации функций автоматики при опробовании.

Сириус-3-ДФЗ-01 Микропроцессорное устройство защиты воздушных и кабельных линий 110-220 кВ в сетях с эффективнозаземленной нейтралью.

Сириус-3-ВЧ-01 Микропроцессорное устройство защиты воздушных и кабельных линий 110-220 кВ в сетях с эффективнозаземленной нейтралью. Тип защиты абсолютной селективности – направленная высокочастотная защита (НВЧЗ).

Модули аналоговых входов

Наиболее простыми в МУРЗ являются модули аналоговых входов, состоящие из набора трансформаторов тока и напряжения, рис. 10.

Конструкция трансформаторов напряжения ничем не отличается от конструкции обычных маломощных трансформаторов. Трансформаторы тока содержат изолированную многовитковую вторичную обмотку, намотанную на каркасе и покрытую изоляционной пленкой. Первичная обмотка представляет собой несколько витков (обычно, 5 витков на номинальный первичный ток 1 А и 1 виток на номинальный ток 5А), намотанных поверх вторичной обмотки обычным многожильным изолированным монтажным проводом, рис. 10. Такой трансформатор представляет собой, фактически, преобразователь тока в напряжение. Если в процессе эксплуатации МУРЗ возникает необходимость в изменении входного номинального тока аналоговых входов с 1 А на 5 А (или наоборот), то сделать это очень просто путем намотки (или, наоборот, смотки) нескольких витков провода. Никаких проблем в эксплуатации этот узел МУРЗ обычно не создает и является самой надежной его частью.

Микропроцессорные устройства релейной защиты: обзор возможностей и спорных вопросов

В большинстве типов МУРЗ этот набор трансформаторов выполнен в виде отдельного модуля, хотя встречаются и конструкции, в которых в этом же модуле размещены входные фильтры, аналого-цифровые преобразователи, и другие элементы предварительной обработки аналоговых сигналов, рис. 11.

Микропроцессорные устройства релейной защиты: обзор возможностей и спорных вопросов

В некоторых типах МУРЗ можно встретить миниатюрные тороидальные трансформаторы тока и напряжения капсулированные эпоксидным компаундом, рис. 12. Такая конструкция лучше защищена от воздействия влаги, но отвод тепла в ней затруднен. Кроме того, она является неремонтопригодной и в ней не возможно изменить коэффициент трансформации. Следует иметь ввиду, что при кажущейся более высокой надежности такой конструкции, ее реальная эксплуатационная надежность может быть даже ниже, чем у обычного не капсулированного трансформатора. Это связано не только с затрудненным отводом тепла, но и с внутренними механическими напряжениями в обмотках, возникающими в процессе отверждения и усадки эпоксидного компаунда. Такого рода проблемы проявляются, обычно, при наличии многовитковых обмоток, намотанных тонким проводом (как в трансформаторах напряжения).

Микропроцессорные устройства релейной защиты: обзор возможностей и спорных вопросов

В. ГУРЕВИЧ, канд. техн. наук

Оцените статью
( Пока оценок нет )
Добавить комментарий