Материалы для изоляторов

Основные характеристики

Ко всем изоляторам, независимо от их назначения, предъявляются общие требования. Они должны обеспечивать достаточный уровень электрической прочности. Этот показатель зависит от значения напряженности электрического поля, при котором изоляционный материал начинает терять свои диэлектрические свойства.

Материалы для изоляторов

Каждый изолятор должен иметь достаточную механическую прочность, обеспечивающую устойчивость к динамическим воздействиям, возникающим при коротких замыканиях между токоведущими частями. Свойства изоляторов сохраняются неизменными, несмотря на дождь, снегопад и прочие агрессивные воздействия окружающей среды. Теплостойкость изолирующих устройств обеспечивает сохранение их свойств при перепадах температур в определенных пределах. Поверхность изоляторов должна быть устойчивой к действию электрических разрядов.

Основными электрическими характеристиками являются следующие:

  • Номинальное и пробивное напряжения. Пробивным считается минимальное значение напряжения, вызывающее пробой изолятора.
  • Значения разрядных и выдерживаемых напряжений, при которых изолятор сохраняет работоспособность в сухом и мокром состоянии.
  • Импульсные разрядные напряжения с различными полярностями.

Механическими характеристиками изоляторов считаются их вес и размеры, а также минимальное значение номинальной разрушающей нагрузки, измеряемой в ньютонах. Данная нагрузка воздействует на головку изолятора перпендикулярно оси.

Различие по материалу исполнения

Чтобы рассмотреть классификацию видов и типов изоляторов нужно сначала разобраться, как их различают. Итак, в первую очередь они классифицируются по материалу изготовления:

Фарфоровые.
Стеклянные.
Полимерные.

Фарфоровые можно назвать классикой, такие применялись раньше даже при наружной проводке в домах. Обычно они белого цвета, но могут быть и других цветов. Такие можно увидеть на разных электроустановках. Достоинством является то, что они выдерживают большие нагрузки на сжатие, обладают хорошими диэлектрическими свойствами.

Материалы для изоляторов

Однако они бьются и ломаются. Отсюда возникает необходимость регулярной проверки их целостности, а часто для этого приходится отключать электроустановку и вытирать с них масло, пыль и другие загрязнения. Также проблемой является их большой вес.

Стеклянные, хоть и боятся ударов, но для контроля их целостности достаточно визуального осмотра, что можно провести и без отключения напряжения. В настоящее время в воздушных линиях электропередач, в качестве подвесных изоляторах они вытесняют керамику, в том числе и потому что меньше весят, а также в производстве дешевле.

Материалы для изоляторов

Полимерные используются в помещении, на улице редко, в качестве исключения. Можно иногда увидеть опорные изоляторы из полимеров на ВЛ 10 кВ или других напряжений средней величины, но редко, или на неответственных линиях. Это обусловлено тем, что с течением времени и под действием УФ-излучений они стареют, внутренняя структура распадается и ухудшаются их электрические и механические характеристики.

Материалы для изоляторов

Однако для оборудования, которое доступно для регулярного обслуживания и ремонта они применяются часто. Например, это могут быть опорные изоляторы шин в трансформаторных подстанциях и распределителях.

Типы изоляторов по назначению

Кроме деления изоляторов по материалу изготовления, есть типы изоляторов по назначению. Это изоляторы:

  • Штыревые;
  • Подвесные;
  • Опорные;
  • Проходные;
  • Стержневые.

Подвесные изоляторы (ПС, ПСД, ПСВ)

Данные изоляторы подвешивают на опоры ВЛЭП для крепления методом подвеса проводов и кабелей. Чаще изготавливают из закалённого стекла.

Изоляторы опорные (ИО, ИОР, СА, ОНШП)

Данные изоляторы используют в распределительных установках и другом электрооборудовании для закрепления токопроводящих элементов. Работают на участках от 6 до 35 кВ.

Проходные изоляторы (ИП, ИПУ)

Материалы для изоляторов

При необходимости провести провод или шину через стену, например, на вводе в подстанцию, используют проходные изоляторы.

Типы изоляторов

Изоляторы играют одну из основных ролей в обеспечении безопасной передачи электроэнергии и минимизации ее потери в процессе передачи

ООО «Альфа Энерго» — ведущий российский разработчик и производитель полимерных опорно-стержневых изоляторов серии ИОСПК.

Изоляторы можно разделить на следующие типы:

По применению:

  1. Опорно -стержневой изолятор. Данный тип изолятора используется в качестве опорных поворотных изолирующих элементов, поддерживающих токоведущие шины и «ножи» разъединителей наружной установки, а также в составе шинной опоры.
  2. Линейный изолятор. Данный тип изолятора используется на высоковольтных линиях электропередачи и в распределительных устройствах электростанций и подстанций переменного тока

По материалу:

  1. Фарфоровый изолятор Данный тип изолятора обладает известными недостатками: склонностью к хрупкому растрескиванию и разрушению, относительно низким допускаемым механическим напряжением, неопределенностью прочностных свойств в состоянии «изгиб плюс кручение», проблемами с обеспечением долговременной надежной армировки фланцев-оконцевателей и др. Вместо него, согласно Приказу РАО «ЕЭС России» от 06.05.02 г. №252 «О повышении надежности опорных стержневых изоляторов 110-220 кВ», возможно применение альтернативных полимерных изоляторов.
  2. Полимерный изолятор Основными преимуществами полимерного изолятора являются повышенная стойкость внешней полимерной изоляции в условиях загрязненной атмосферы; долговечность и надежность в широком диапазоне воздействия механических нагрузок и изменения температуры; малая масса; значительная экономия средств при монтаже и замене, антивандальность и др.

Тип полимерного изолятора, согласно требованиям ГОСТ, определяется видом конструкции, материалом защитной оболочки, классом напряжения, механической разрушающей силой, максимальной степенью загрязнения, при которой может применяться изолятор, климатическим исполнением и категорией размещения.

Условное обозначение типа изолятора состоит из букв и цифр, которые означают:И

изолятор
О опорный
С стержневой
П полимерный
К защитная оболочка из кремнийорганической резины
10-110; 8-220 и т.д. значение механической разрушающей силы на изгиб в кН; тире, класс напряжения, кВ
450, 480 и т.д. испытательное напряжение грозового импульса, кВ
I-IV максимальная степень загрязнения (СЗ) по ГОСТ 9920, при которой может применяться изолятор
У, УХЛ климатическое исполнение по ГОСТ 15150
1 категория размещения по ГОСТ 15150 — для эксплуатации на открытом воздухе

Пример записи условного обозначения изолятора ИОСПК-10-110/450-II-УХЛ1 ТУ 3494-002-52314081-02 (обозначение технических условий):

  • минимальная механическая разрушающая сила на изгиб — 10 кН;
  • класс напряжения 110 кВ;
  • испытательное напряжение грозового импульса — 450 кВ;
  • для работы в районах с 2 степенью загрязнения;
  • климатическое исполнение УХЛ;
  • категория размещения — 1.

Подвесные изоляторы

Подвесные изоляторы предназначены для крепления многопроволочных проводов к опорам воздушных линий и РУ. Их конструируют так, чтобы они могли противостоять растяжению.

Материалы для изоляторов

Рис.9. Подвесной тарельчатый изолятор

Тарельчатый изолятор (рис.9) имеет фарфоровый или стеклянный корпус в виде диска с шарообразной головкой. Нижняя поверхность диска выполнена ребристой для увеличения разрядного напряжения под дождем, а верхняя поверхность диска — гладкой, с небольшим уклоном для стекания дождя. Внутри фарфоровой (стеклянной) головки цементом закреплен стальной оцинкованный стержень. Сверху фарфоровую головку охватывает колпак из чугуна с гнездом для введения в него стержня другого изолятора или ушка для крепления гирлянды к опоре. Число изоляторов в гирлянде выбирают в соответствии с номинальным напряжением.

Популярные статьи  Зачем на фазный контакт двухклавишного выключателя подключают два фазных провода?

Внутренней и наружной поверхностям фарфоровой головки придана такая форма, чтобы при тяжении провода фарфор испытывал только сжатие (как известно, прочность фарфора при сжатии значительно больше, чем при растяжении). Так обеспечивают высокую механическую прочность тарельчатых изоляторов. Они способны выдерживать тяжения порядка 104-105Н. Механическую прочность подвесных изоляторов характеризуют испытательной нагрузкой, которую изоляторы должны выдерживать в течение 1 ч без повреждений.

Расчетную нагрузку на тарельчатые изоляторы принимают равной половине часовой испытательной.

В местностях, прилегающих к химическим, металлургическим, цементным заводам, воздух содержит значительное количество пыли, серы и других веществ, которые образуют на поверхности изоляторов вредный осадок, снижающий их электрическую прочность. Вблизи моря и соленых озер воздух имеет большую влажность и содержит значительное количество соли, которая также образует вредный осадок.

Нормальные изоляторы, используемые в районах, удаленных от источников загрязнения, имеют отношение длины пути утечки к наибольшему рабочему напряжению около 1,5 см/кВ. Для РУ, подверженных загрязнению, применяют изоляторы особой конструкции или увеличивают число изоляторов в гирляндах. Прибегают также к периодической обмывке или обтирке изоляторов.

Материалы для изоляторов

Рис.10. Подвесной изолятор для местностей с загрязненным воздухом

Тарельчатые изоляторы, предназначенные для местностей с загрязненным воздухом (рис.10), имеют увеличенную длину пути тока утечки и выполнены так, чтобы поверхность их была в наибольшей мере доступна очищающему действию дождя и ветра.

При одинаковой степени загрязнения и увлажнения разрядные напряжения у изоляторов особой конструкции приблизительно в 1,5 раза выше, чем у изоляторов обычного исполнения.

Конструкция подвесных изоляторов

Изолятор ПФГ-6А

Подвесные изоляторы существуют следующих типов:

  • цепочечные,
  • тарельчатые (с шапкой и стержнем),
  • паучковые,
  • «моторные»,
  • длинностержневые.

Первыми подвесными изоляторами, пригодными для промышленной эксплуатации, были цепочечные фарфоровые изоляторы Хьюлетта (E. Hewlett)

Они были разработаны одновременно с тарельчатыми изоляторами, но имели важное практическое преимущество: в их конструкции не использовалась цементная связка (посредством которой соединялись детали тарельчатых изоляторов), что повышало их механическую надёжность. Однако, они обладали более сложной системой соединения в гирлянды (петлями крест-накрест, наподобие изоляторов-«орехов») и худшими электрическими характеристиками по сравнению с тарельчатыми изоляторами. Позднее в качестве альтернативы обычным тарельчатым изоляторам с цементной связкой были созданы паучковые, «моторные» и бесцементные изоляторы различных конструкций

Эти типы подвесных изоляторов, как и цепочечные, в настоящее время более не применяются, так как проблема с надёжностью цементной связки была решена, что уничтожило их преимущества. Наиболее распространённым типом подвесных изоляторов в настоящее время являются тарельчатые изоляторы с шапкой и стержнем и цементной связкой

Позднее в качестве альтернативы обычным тарельчатым изоляторам с цементной связкой были созданы паучковые, «моторные» и бесцементные изоляторы различных конструкций. Эти типы подвесных изоляторов, как и цепочечные, в настоящее время более не применяются, так как проблема с надёжностью цементной связки была решена, что уничтожило их преимущества. Наиболее распространённым типом подвесных изоляторов в настоящее время являются тарельчатые изоляторы с шапкой и стержнем и цементной связкой.

Тарельчатые подвесные изоляторы состоят из:

  • фарфоровой или стеклянной изолирующей детали — «тарелки»,
  • шапки из ковкого чугуна,
  • стержня в форме пестика.

Шапка и стержень скрепляются с изолирующей деталью портландцементом марки не ниже 500. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при формировании гирлянд. Число изоляторов в гирлянде обусловлено напряжением ЛЭП, степенью загрязнения атмосферы, типом изоляторов и материалом опор. Для крепления проводов могут применяться изолирующие конструкции из нескольких параллельно подвешенных гирлянд изоляторов.

Подвесные полимерные(композитные) изоляторы состоят из стеклопластикового стержня, полимерной оболочки и оконцевателей.

Электроизоляционные лакированные ткани

Лакоткани и стеклоткани представляют собой гибкий материал и изготовляют из х/б, стеклянной или шелковой ткани. После этого ткань пропитывают масляно-битумным или масляным лаком или другим изоляционным составом. Они выпускаются рулонами толщиной 0,1—0,3 мм и шириной от 700 до 1000 мм. Марки лакоткани, выпускаемые промышленностью ЛХС, ЛХСМ, ЛХСС, ЛХЧ, ЛШС. Марки стеклоткани ЛСБ, ЛСМ, ЛСЭ, ЛСММ, ЛСК, ЛСКР, ЛСКЛ. Лакоткань шелковую марки ЛШС выпускают также и толщиной 0,08 мм, а ЛШСС может иметь толщину 0,04 мм.

Лакоткань

У марок лакотканей и стеклотканей аббревиатура в названии расшифровывается следующим образом:
Л — лакоткань;
X — хлопчатобумажная;
С — на втором месте — стеклянная;
К — на втором месте — капроновая;
С — на третьем месте — светлая;
К — на третьем месте — кремнийорганическая;
С — на четвертом месте — специальная;
Л — на четвертом месте — липкая;
Ч — черная;
Ш — шелковая;
Б — битумно-маслянноалкидная;
М — маслостойкая;
Р — резиновая;
Э — эскапоновая.Стеклоткань имеет высокую нагревостойкостью. Марки ЛСКЛ и ЛСК — около 180°С, а марка ЛБС доходит до 130° С. Их электрическая прочность составляет 35 – 40 кВ/мм.

Стеклоткань

Лакоткань и стеклоткань используются в качестве электро и тепло изоляционных материалов. Чаще всего ими изолируют слои обмоток катушек.

Фарфор

Фарфор

Примеры применения

Высокотемпературные изоляторы.Корпус ртутной дуговой лампы от светолучевого осциллографа. Рама из алюминиевого сплава, чёрный корпус — карболит, фарфоровые бусы изолируют проводники, которыми подключается лампа. Лампа очень сильно нагревается во время работы. Кучка фарфоровых бус от различных нагревателей.Свечи зажигания от двигателя внутреннего сгорания. Центральный электрод изолирован фарфором. Ни один другой диэлектрик не способен выдержать длительное воздействие температуры, давления, горючего внутри камеры сгорания.Детали электроизделий.Держатели ламелей розетки, патрона изготовлены из фарфора. Чёрный корпус патронов — карболит.Мощные резисторы имеют основу из фарфоровой трубки. У зеленого резистора обмотка скрыта под эмалью.Изоляторы на столбах.Фарфоровые изоляторы линий электропередач. Между фарфоровым изолятором и стальным крюком втулка из полиэтилена, для защиты фарфора от трещин. Дисковая форма изоляторов позволяет воде стекать не образуя сплошного слоя, замыкающего проводник на опору.

Типы по конструкции и назначению

По конструкции выделяют три основных разновидности изоляторов ВЛ:

  • штыревые;
  • подвесные линейные;
  • опорные и проходные.

Штыревые относятся к линейным изоляторам. Используются в ЛЭП до 35 кВ. В том числе на линиях 0,4 кВ. Этот тип исполнения цельный, на нем есть канавка для закрепления провода и отверстия для установки на траверсы, крюки, штыри.

Популярные статьи  Действие электрического тока на организм человека

Интересно: на ВЛ от 6 до 10 кВ используют одноэлементные изоляторы, а на 20-35 – из двух элементов.

Подвесные используются на высоковольтных воздушных линиях напряжением 35 кВ и больше. Они бывают двух типов поддерживающими (стержневыми) и натяжными.

Натяжные тарельчатые изоляторы работают на растяжение и удерживают линию на опоре, монтируются под углом. Конструктивно они выполнены в виде фарфоровой или стеклянной тарелки. В нижней части обычно выступает стержень с расширяющейся шляпкой. Сверху расположена металлическая крышка с отверстием специальной формы, такой чтобы в ней можно было закрепить нижний стержень. Таким образом происходит унификация и вы можете набрать в гирлянду столько изоляторов, сколько нужно для достижения нужных номинальных напряжений пробоя. Такая гирлянда получается гибкой, она удерживает линии электропередач на опоре.

На промежуточных опорах устанавливают подвесные стержневые изоляторы. Они выполнены в виде опорного стержня, на его концах металлические части для крепления к опоре и проводам. Они устанавливаются вертикально и провод ложится на них – это и есть основное отличие от предыдущих. Также они отличаются тем, что натяжные изоляторы выдерживают больший вес, поэтому могут использоваться на опорах, расположенных дальше друг от друга.

Интересно: на ответственных участках и для повышения надежности монтажа ЛЭП могут использоваться сдвоенные гирлянды натяжных изоляторов.

Опорные и проходные изоляторы уже являются станционными, а не линейными. Этот вид так называется потому что используется внутри электростанций и трансформаторных подстанций. Изготовляются из полимеров или фарфора. Опорные используют для крепления токопроводящих шин к заземленным конструкциям, например, корпусу трансформаторов или внутри вводных и распределительных электрощитов.

Маркировка изоляторов всех разновидностей подобная, обычно она содержит сведения о типе изделия и номинального напряжения линии, например:

Для того чтобы провести кабель или шину через стену используются проходные изоляторы. Эта разновидность изделий с полым телом, в котором расположена токоведущая часть. Для повышения изолирующих свойств может иметь дополнительно масляный барьер или маслобумажную прокладку. Такой тип изоляторов позволяет прокладывать линию до 110 кВ. Бывают и другого типа – без токопровода внутри, просто диэлектрический полый цилиндр с отверстием, который надевается на кабель.

На это мы и заканчиваем нашу статью. Теперь вы знаете, какие бывают изоляторы для воздушных линий электропередач и где применяется каждый вариант исполнения!

Материалы по теме:

  • Как установить электрический столб на участке
  • Монтаж электропроводки в ретро-стиле
  • Как изолировать провода
  • Арматура для монтажа СИП кабеля

4.2. Требования надежности

4.2.1. Надежность изолятора определяют среднегодовым уровнем отказов, вероятностью безотказной работы и гамма-процентным сроком службы.

За отказ в нормальном эксплуатационном режиме принимают разрушение изолятора или снижение его электрических параметров, приводящее к перекрытию при рабочем напряжении.

Среднегодовой уровень отказов выбирают из ряда: 0,000005, 0,00001, 0,00005, 0,0001.

Нормированное значение среднегодового уровня отказов должно быть указано в технических условиях на изолятор конкретного типа.

Вероятность безотказной работы Р вычисляют по формуле

P

(t ) = l —At , (1)

где t

— время с начала эксплуатации, год;

А

— среднегодовой уровень отказов, 1/год.

4.2.2 Гамма-процентный срок службы изоляторов с вероятностью 0,999 должен быть не менее 30 лет.

Характеристики изоляторов

Электрический изолятор – это изделие, предназначенное для крепления провода, кабеля или шины на несущей конструкции линии электропередач и предотвращения её пробоя на землю. Они бывают разных видов и изготавливаются из диэлектрических материалов – фарфора, стекла и полимеров.

Так как электрическое предназначение изоляторов – обеспечить изоляцию проводника от несущей конструкции, то основными характеристиками являются:

  • Сухоразрядное напряжение – напряжение, при котором наступает искровой разряд по поверхности в сухом её состоянии при нормальных условиях окружающей среды.
  • Мокроразрядное напряжение – то же самое, но под дождем, если его струи попадают на изолятор под углом в 45 градусов. Сила дождя при этом равна 5 мм/мин, удельное объемное сопротивление воды — 9500-10500 Ом*см (при 20°С). Так как вода проводит электрический ток – мокроразрядное напряжение всегда ниже сухоразрядного.
  • Пробивное напряжение – напряжение, при котором наступает пробой тела изолятора между стержнем и шапкой (для подвесных изделий). Стержень и шапка при этом являются электродами.

Особенности монтажа

Монтаж фарфоровых изоляторов на линиях ВЛИ с использованием самонесущих изолированных проводов СИП-3 происходит только после того, как все опоры были выставлены. В этой ситуации зачастую используются изоляторы ШФ 20ГО или же более современные варианты ШФ-20Г1. Вторые оснащены специальной пластиковой втулкой, также они более просты в установке и позволяют раскатывать провод, не используя специальные ролики. Установка изоляторов проводится на штыри траверс, либо же они могут ставиться на крюки опор с применением специальных пластиковых колпачков КП-22.

После монтажа фарфоровых изоляторов можно переходить к раскатке провода. Наиболее легкий способ раскатки и фиксации проводов происходит прямо по желобам на штыревых изоляторах ШФ-20Г1 (УО). Если для создания линии используются изоляторы марки ШФ-20ГО, то дополнительно должны использоваться раскаточные ролики. Они ставятся на траверсы, расположенные на промежуточной опоре.

Классификация

Многошейковый изолятор РФО на крюке Линейный штыревой изолятор ШФ-10Г Фарфоровый роликовый изолятор Линейные изоляторы классифицируются по способу крепления на опоре, конструктивному исполнению, материалу изготовления и классу напряжения.

  • Опорный. Для работы в помещениях — с гладкой поверхностью и ребристые.
  • Для работы на открытом воздухе — штыревые, стержневые.

Проходной.

  • Для работы в помещениях — с токоведущими шинами (токопроводами), без токоведущих шин.

Для работы на открытом воздухе — с нормальной и усиленной изоляцией.
Высоковольтные вводы для работы на открытом воздухе — в герметичном и негерметичном исполнении.
Линейный для работы на открытом воздухе — штыревой, тарельчатый, стержневой, орешковый, анкерный.
Защитный — полый изолятор, предназначенный для использования в качестве изолирующей защитной оболочки электротехнического оборудования.
Такелажный изолятор для установки между работающими на растяжение тросами оттяжек антенных мачт, подвесками контактной сети, проводами антенн.

Электрические изоляторы могут изготавливаться из стекла, фарфора и полимерных материалов. Фарфоровые изоляторы покрываются глазурью для улучшения изолирующих свойств.

По способу крепления на опоре

По способу крепления на опоре изоляторы подразделяются на штыревые, подвесные и опорные линейные:

  • Штыревые изоляторы (крепятся на крюках или штырях) применяются на воздушных линиях до 35 кВ
  • Подвесные изоляторы (собираются в гирлянду и крепятся специальной арматурой) применяются на ВЛ 35 кВ и выше.
  • Линейные опорные изоляторы(крепятся к траверсам или стойкам опор ЛЭП с помощью болтов) применяются на ВЛ до 154 кВ (в отечественной практике — на ВЛ 6-10 кВ).

По материалу изготовления

По материалу изготовления изоляторы подразделяются на фарфоровые, стеклянные и полимерные:

  • Фарфоровые изоляторы изготавливают из электротехнического фарфора, покрывают слоем глазури и обжигают в печах.
  • Стеклянные изоляторы изготавливают из специального закалённого стекла. Они имеют бо́льшую механическую прочность, меньшие размеры и массу, медленнее подвергаются старению по сравнению с фарфоровыми, но имеют меньшее электрическое сопротивление.
  • Полимерные изоляторы изготавливают из специальных пластических масс. предназначен для изоляции и механического крепления токоведущих частей в электрических аппаратах и для монтажа токоведущих шин распределительных устройств электрических станций и подстанций.
Популярные статьи  Почему при коротком замыкании выбивает вводной автомат вместе с групповым?

По классу напряжения

По напряжению изоляторы разделяются на классы 1, 3, 6, 10, 15, 20, 35, 110, 150, 220, 330, 500, 750, 1150, что соответствует номинальным электрическим напряжениям ВЛ или распределительных устройств в кВ

Что из себя представляют электрические изоляторы?

Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.

Назначение

Электрические изоляторы предназначены для крепления шин, проводов, тралеи и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции.

В зависимости от места установки их подразделяют на внутренней и наружной

Также немаловажное значение играет класс напряжения, на который рассчитан тот или иной изолятор. Из-за чего будет отличаться его конструктивное исполнение и определенные технические характеристики, определяющие возможность их применения в тех или иных электроустановках

Основные технические характеристики

В соответствии с требованиями нормативных документов, для электрических изоляторов регламентируются такие характеристики:

  • Сухоразрядное напряжение — это  такая величина, при которой произойдет электрический разряд в условиях сухого состояния поверхности. Перекрытие изолятора
  • Мокроразрядное напряжение – определяет такую же величину, как и предыдущий параметр, но при условии попадания дождя на поверхность. При этом рассматривается такой вариант, когда направление струй располагается под углом 45°.

Рис. 2. Изолятор под дождем

При таком потоке струй под углом 45°, которые обозначены на рисунке 2 буквой А, обеспечивается максимальное обтекание поверхности Б, и, как следствие, обеспечивается минимальное сопротивление электрическому току – от 9,5 до 10,5 кОм*см. Этот параметр всегда ниже сухоразрядного.

  • Напряжение пробоя – представляет собой такую величину, при которой произойдет пробой между двумя полюсами. В зависимости от конструкции, полюса могут быть представлены стержнем и шапкой либо шиной и фланцем.
  • Механическая прочность – проверяется нагрузкой на изгиб, разрыв или срез головки. При этом конструкцию жестко закрепляют и прикладывают к ней усилие, плавно повышаемое до такого уровня высочайшего напряжения в материале, которое приводит к разрушению.
  • Термическая устойчивость – испытывается посредством попеременного нагревания и резкого охлаждения. Состоит из двух-трех циклов, в зависимости от материала и конструкции. После чего прикладывается электрический потенциал, создающий множественные разряды.

Проверка технических характеристик.

Следует отметить, что испытательные процедуры не являются обязательными для всех изоляторов, выпускаемых на заводе. Электрическим, термическим и механическим воздействиям подвергаются только 0,5% от партии. Обязательной для всех изоляторов  является проверка напряжением перекрытия в течении трех минут, при котором на изоляторе возникают искровые разряды.

У подвесных изоляторов обязательно проверяется механическая характеристика. Для этого в течении минуты к нему прикладывается механическая нагрузка, которую регламентируют заводские или государственные нормы.

Такие испытания обеспечивают нормальную работу электрических изоляторов при номинальных токах и номинальных напряжениях в сети. А также, достаточный уровень надежности. Кроме этого, некоторые модели подвергаются периодической проверке в ходе эксплуатации. По результатам периодических осмотров и испытаний они могут проходить очистку, выбраковку и замену.

Это интересно: Испытание кабеля повышенным напряжением — методика, нормы, сроки

Вакуум как изолятор

Газовая среда при крайне низком давлении может создавать условия, когда газ просто не сможет образовывать заметный ток в межэлектродном зазоре. Такие условия называют изоляционным вакуумом. При столкновении с электронами или положительными ионами, которые вылетают из электродов, ионизация молекул газа под низким давлением происходит очень редко. Так называемый высокий вакуум при условии постоянного напряжения до 20 кВ на поверхности катода может обойтись без пробоя при напряженности поля порядка 5 МВ/см. Если речь идет об аноде, то напряженность должна быть в разы выше. И все же заметное увеличение напряжения способствует тому, что вакуумные электроизоляционные материалы утрачивают свой защитный потенциал. Пробой в данном случае может наступать в результате обмена заряженными частицами в связке катод-анод. Диэлектрики такого типа чаще используются в электронике. Их применяют и в целях ускорения электронов в обычных приборах, и в рентгеновских аппаратах для обеспечения высоковольтных приложений.

Применение аппаратных и станционных изоляторов

С помощью этих изолирующих устройств осуществляется изоляция и крепление шин распределительных устройств, находящихся в электростанциях и подстанциях. С их помощью изолируются токоведущие части различной электрической аппаратуры.

Большинство аппаратных и станционных изоляторов изготавливается из фарфора, максимально отвечающего всем требованиям, предъявляемым к этим изделиям. Для некоторых деталей аппаратуры, выполняющих изолирующие функции, применяется бакелит, гетинакс или текстолит. Данные элементы устанавливаются внутри приборов под защитными кожухами и при необходимости заливаются изоляционным маслом.

Материалы для изоляторов

Различные виды креплений выполняются с помощью специальной металлической арматуры, закрепленной на фарфоровом основании. Для крепления используются специальные цементирующие замазки, у которых коэффициент объемного расширения приближен к фарфору. Качество изоляторов можно улучшить за счет покрытия глазурью наружной фарфоровой поверхности.

Сама арматура рассчитана на повышенные механические нагрузки. Конструкция этих элементов включает в себя квадратные или овальные фланцы. В нижней части расположены отверстия для болтов, а сверху предусмотрены металлические головки, к которым крепятся проводники. У изоляторов, рассчитанных на низкие механические нагрузки, фланцы и головки отсутствуют. Вместо них изделия оборудованы металлическими фасонными вкладышами, в которых предусмотрены резьбовые отверстия, закрепленные в глубине фарфорового основания. Такие конструкции обладают меньшими размерами и весом.

Оцените статью
( Пока оценок нет )
Добавить комментарий