Линии магнитной индукции

Содержание:

Электромагнитная индукция против магнитной индукции

Электромагнитная индукция и магнитная индукция — два очень важных понятия в теории электромагнитного поля. Применения этих двух концепций многочисленны. Эти теории настолько важны, что без них электричество было бы недоступно. В этой статье мы обсудим разницу между электромагнитной индукцией и магнитной индукцией.

Что такое магнитная индукция?

Магнитная индукция — это процесс намагничивания материалов во внешнем магнитном поле. Материалы можно разделить на несколько категорий в зависимости от их магнитных свойств. Парамагнитные материалы, диамагнитные материалы и ферромагнитные материалы — это лишь некоторые из них. Есть также некоторые менее распространенные типы, такие как антиферромагнитные материалы и ферримагнетики. Диамагнетизм проявляется в атомах только с парными электронами. Полный спин этих атомов равен нулю. Магнитные свойства возникают только за счет орбитального движения электронов. Когда диамагнитный материал помещается во внешнее магнитное поле, он создает очень слабое магнитное поле, антипараллельное внешнему полю. Парамагнитные материалы имеют атомы с неспаренными электронами. Электронный спин этих неспаренных электронов действует как небольшой магнит, который намного сильнее, чем магниты, созданные орбитальным движением электронов. Когда эти небольшие магниты помещены во внешнее магнитное поле, они выравниваются по полю, создавая магнитное поле, параллельное внешнему полю. Ферромагнитные материалы также являются парамагнитными материалами с зонами магнитных диполей в одном направлении, даже до приложения внешнего магнитного поля. При приложении внешнего поля эти магнитные зоны выравниваются параллельно полю, так что они усиливают поле. Ферромагнетизм остается в материале даже после удаления внешнего поля, но парамагнетизм и диамагнетизм исчезают, как только внешнее поле устраняется.

Что такое электромагнитная индукция?

Электромагнитная индукция — это эффект тока, протекающего через проводник, который движется через магнитное поле. Закон Фарадея — самый важный закон в отношении этого эффекта. Он заявил, что электродвижущая сила, создаваемая вокруг замкнутого пути, пропорциональна скорости изменения магнитного потока через любую поверхность, ограниченную этим путем. Если замкнутый путь представляет собой петлю на плоскости, скорость изменения магнитного потока по площади петли пропорциональна электродвижущей силе, генерируемой в петле. Однако сейчас этот цикл не является консервативным; поэтому общие электрические законы, такие как закон Кирхгофа, не применимы в этой системе. Следует отметить, что постоянное магнитное поле на поверхности не создает электродвижущей силы. Магнитное поле должно изменяться, чтобы создать электродвижущую силу. Эта теория является основной концепцией производства электроэнергии. Практически вся электроэнергия, за исключением солнечных батарей, вырабатывается с помощью этого механизма.

В чем разница между электромагнитной и магнитной индукцией?

• Магнитная индукция может создавать или не создавать постоянный магнит. Электромагнитная индукция создает ток, который противодействует изменению магнитного поля.

• В магнитной индукции используются только магниты и магнитные материалы, а в электромагнитной индукции используются магниты и электрические цепи.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Тл декатесла даТл daT 10−1 Тл децитесла дТл dT
102 Тл гектотесла гТл hT 10−2 Тл сантитесла сТл cT
103 Тл килотесла кТл kT 10−3 Тл миллитесла мТл mT
106 Тл мегатесла МТл MT 10−6 Тл микротесла мкТл µT
109 Тл гигатесла ГТл GT 10−9 Тл нанотесла нТл nT
1012 Тл тератесла ТТл TT 10−12 Тл пикотесла пТл pT
1015 Тл петатесла ПТл PT 10−15 Тл фемтотесла фТл fT
1018 Тл эксатесла ЭТл ET 10−18 Тл аттотесла аТл aT
1021 Тл зеттатесла ЗТл ZT 10−21 Тл зептотесла зТл zT
1024 Тл иоттатесла ИТл YT 10−24 Тл иоктотесла иТл yT
применять не рекомендуется

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину.  У нас должно получится что-то типа этого.

Линии магнитной индукции

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

Линии магнитной индукции

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

Линии магнитной индукции

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.

Линии магнитной индукции

Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог  — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

где

I — это сила тока в катушке, Амперы

N — количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Что такое однородное и неоднородное магнитное поле

Однородное магнитное поле — это магнитное поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

В однородном магнитном поле заряженная частица, движущаяся со скоростью \( \overrightarrow v\) перпендикулярно линиям индукции, подвергается воздействию силы \(\overrightarrow{F_л}\), постоянной по модулю и направленной перпендикулярно вектору скорости \(\overrightarrow v\). В таком поле магнитная индукция B во всех точках одинакова по модулю и направлению.

Благодаря силе Лоренца в однородном поле частицы движутся равномерно по окружности с центростремительным ускорением.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Сила Лоренца \(\overrightarrow{F_л}\) — электромагнитная сила со стороны магнитного поля, действующая на движущийся заряд q:

\(F=qE+q\left\)

Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что частица равномерно движется по окружности с радиусом r.

Радиус r окружности определяется как частное произведения массы m со скоростью v и произведения электрического заряда q с индукцией B.

Радиус траектории движения частицы с постоянной массой и ее скорость не влияют на период ее обращения в однородном поле.

В однородном магнитном поле максимальный вращающий момент \(M_{max}\) при воздействии замкнутых проводников, изготовленных из очень тонкой проволоки разных размеров и форм, с током приобретает свойства:

  1. Он пропорционален силе тока в контуре I.
  2. Пропорционален площади контура.
  3. Для контуров с одинаковой площадью не зависит от их формы.

Таким образом, максимальный вращающий момент становится пропорциональным магнитному моменту \(P_{m}\) контура с током:

\(P_m=I\ast S.\)

Величина магнитного момента \(P_{m}\) характеризует действие магнитного поля на плоский контур с током.

В данном случае значение вращающего момента \(M_{max}\), действующего на контур с магнитным моментом \(P_{m}\), принимают равным единице.

Следовательно, формула для определения индукции B в однородном магнитном поле приобретает вид:

\(B=\frac{M_{max}}{P_m}.\)

Примеры однородных магнитных полей:

  1. Магнитное поле внутри соленоида. Соленоид — длинная цилиндрическая катушка, состоящая из нескольких витков плотно намотанной по винтовой лестнице проволоки. Каждый виток создает свое магнитное поле, которое складывается с другими в общее поле. Оно является однородным при условии, что длина катушки значительно превосходит ее диаметр. Тогда внутри соленоида линии поля будут параллельными его оси и прямыми.
  2. Магнитное поле внутри тороидальной катушки. Здесь линии замыкаются внутри самой катушки. Представлены в виде окружностей, параллельных оси тора. Токи в обмотке тороидальной катушки текут равномерно по часовой стрелке.
Популярные статьи  Как правильно посчитать потребление мощности всех электроприборов?

Неоднородное магнитное поле — это магнитное поле, в котором сила, действующая на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

В неоднородном магнитном поле магнитная индукция в разных местах имеет различные модули и направления. Для вычисления значения вектора \(\overrightarrow B\) в неоднородном поле необходимо определить вращающий момент, действующий на него. Для этого в некую точку помещают контур размеров, меньших в сравнении с расстояниями, на которых поле заметно меняется.

Примеры неоднородных магнитных полей:

  1. Снаружи соленоида. Линии на концах катушки соленоида не являются параллельными друг другу и тянутся от одного конца к другому. А снаружи вблизи боковой поверхности катушки поле практически отсутствует.
  2. Снаружи полосового магнита. Магнитное поле полосового магнита подобно полю вокруг соленоида. Магнитные линии тянутся от одного конца магнита к другому по направлению от северного полюса к южному. Имеется нейтральная зона.

Отличия однородного и неоднородного магнитных полей

  1. Однородное поле находится внутри проводника или магнита, неоднородное — снаружи.
  2. В однородном поле сила, действующая в разных точках, одинакова. В неоднородном — различна.
  3. Линии однородного магнитного поля являются одинаковыми по густоте и параллельными друг другу. В неоднородном поле линии отличаются по густоте и искривлены.
  4. Линии магнитной индукции однородного поля находятся на равном расстоянии друг от друга.

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

Как устроены магнитные цепи?

Магнитную цепь, на самом деле, не так сложно представить, как может показаться человеку, который о них впервые слышит. Обычно магнитные цепи представляют из себя некоторые фигуры из ферромагнитного сердечника с источником или несколькими источниками ПОтока. Пожалуй, один из самых простых примеров с одним источником, который можно взять на вооружение, проиллюстрирован ниже:

Перед продолжением обусловимся, что среди электротехников сердечник называют магнитопроводом. Часть магнитопровода, на которой отсутствуют обмотки и которая служит для замыкания магнитной цепи, называется «ярмо».

Начнем с тороидального сердечника. Такой тороидальный сердечник может служить формой для катушки, как бы странно это не звучало. Но что за катушка? Ну, первое что приходит в голову — провод, образующий витки. Хорошо, но какого его предназначение? Вернемся к электрическим цепям и вспомним, что существуют источники тока / напряжения, так называемые активные элементы. Так вот, в магнитных цепях роль источника выполняют катушки с током, накрученные на основной элемент магнитной цепи — ферромагнитный магнитопровод.

Вспомним теперь про ферромагнитные материалы. Почему именно они? Дело в том, что благодаря высокому значению магнитной проницаемости, что сигнализирует о хорошей намагниченности ферромагнетика, силовые линии магнитного поля практически не выходят за пределы сердечника, либо не выходят вовсе. Однако это будет справедливо лишь тогда, когда наш сердечник замкнутый, либо имеет небольшие зазоры. То есть, ферромагнетики обладают сильно выраженными магнитными свойствами, когда как у парамагнетиков и диамагнетиков они значительно слабее, что можно наблюдать на следующем графике зависимости намагниченности от напряженности магнитного поля:

Вещества, которые входят в конструкцию магнитопровода, могут обладать не только сильномагнитными свойствами, но также и слабомагнитными. Однако мы рассматриваем сердечник из ферромагнитного материала.

Ещё из школьного курса мы представляем себе картину с линиями магнитной индукции соленоида, мы можем визуально представить его поле и понимаем, что концентрация силовых линий, их насыщенность, наибольшая в центре рассматриваемого соленоида

Тут очень важно вспомнить правило буравчика, чтобы правильно указать направление силовых линий

Популярные статьи  Проводники и диэлектрики

Отсюда становится ясно, что катушки-источники порождают магнитное поле, а следовательно и поток линий магнитной индукции. Такие линии будут циркулировать по нашему сердечнику, словно повторяя его форму

Именно поэтому нам важно условие замкнутости сердечника и материал, из которого он сделан. Положим, что наш воображаемый сердечник замкнут

Из этого следует, что и силовые линии замкнуты, а следовательно выполняется теорема Гаусса для магнитного поля, которая гласит: поток линий магнитной индукции через замкнутую поверхность равен нулю. Стоит учесть, что поток адаптируется под площадь сечения.*

Ну и в конечном счете ферромагнитный сердечник поток куда-то передает! Аналогичным образом замкнутый проводник позволяет передать электрический ток.

Отлично! Мы разобрались с тем, что такое магнитные цепи и даже вспомнили про теорему Гаусса и ферромагнетики. Теперь поговорим о том, какие следствия вытекают из теоремы Гаусса и возможности пренебрежения полем вне сердечника и в зазорах.

1] Магнитные потоки Ф1 и Ф2 через произвольные сечения будут равны между собой.

2] В узле (разветвлении) сердечника алгебраическая сумма потоков (с учетом их направлений) будет равна нулю… Мне одному это что-то напоминает?

То есть мы окончательно сформулировали, что замкнутая (или почти замкнутая) система из ферромагнитных сердечников может рассматриваться как проводящая цепь. В нашем случае — магнитная.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой  — на ЮГ.

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).

Направление тока и направление линий магнитного поля

Правило буравчика

Ранее для определения направления магнитного поля в опытах использовалась стрелка из магнита. А что же делать, если ее под рукой не оказалось?

Необходимо знать правило буравчика* (правого винта):когда поступательное движение буравчика (винта) сонаправлено с током, протекающего в проводнике, направление вращения ручки буравчика укажет направление линий магнитного поля.

На рисунке 7 приведена иллюстрация, как использовать правило буравчика. Относительно читателя ток идет вниз. Буравчик, расположенный как на рисунке, вращают по часовой стрелке, чтобы он двигался вниз. Тогда, в соответствии с правилом, направление магнитных линий вокруг проводника — «по часовой стрелке».

Линии магнитной индукции

Рисунок 7 –Иллюстрация использования правила буравчика

*Напоминание: вообще, буравчик — это режущий инструмент для высверливания небольших отверстий. Однако зачастую школьникам трудно представить его. Более простым примером системы, аналогичной буравчику, может служить обычная пробка у пластиковой бутылки. Когда бутыль расположена вертикально, а пробка закручивается по часовой стрелке, поступательно она движется вниз. Если пробку раскручивать против часовой стрелки, она будет двигаться вверх. Можно ориентироваться на этот пример, мысленно располагая бутыль с пробкой вертикально или горизонтально, чтобы в дальнейшем было легче использовать правило буравчика.

Вместо буравчика зачастую используют правило правой руки: если отогнутый от ладони на 90° большой палец развернуть по току в проводнике, а затем оставшимися пальцами обхватить проводник, они укажут направление линий магнитного поля.

Пример, поясняющий правило правой руки,приведен на рисунке 8.

Линии магнитной индукции

Рисунок 8 – Иллюстрация применения правила правой руки

Правила буравчика и правила правой руки одинаково удобны и можно использовать любое из них. Однако далее будет рассматриваться еще и правило левой руки. Чтобы избежать путаницы, в какой ситуации какую руку использовать, для определения направления линий магнитного поля предпочтительнее пользоваться именно правилом буравчика.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс

июжный полюс . Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однаковзаимодействие магнитов не является электрическим . Об этом свидетельствуют следующие опытные факты.

• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда

двухполюсные, они существуют только в видедиполей . Изолированных магнитных полюсов (так называемыхмагнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся

заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд ,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля

.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка

компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C.344- 351.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учрежде-ний с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. — Мн.: Нар. асвета, 2008. — С. 170-182.
  3. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. — М.: Дрофа, 2005. — С. 399-408, 412-414.
Популярные статьи  Как подключить гранит-300 к лампочкам?

Применение магнитных цепей

Магнитные цепи находят очень большое поле применения, а именно, они используются для надежного пропускания магнитного потока по специальному проводнику с минимальными или, в некоторых случаях, определенными потерями. В электротехнической промышленности широко используется взаимная зависимость магнитной и электрической энергий, переход из одного состояния в другое. На подобном принципе работают, например, трансформаторы, разные электродвигатели, генераторы и другие устройства.

Конечно, можно продолжительное время говорить об устройствах, разных типах магнитопроводов (про которые речь пойдет далее), но наша первичная цель — рассмотреть выводы основных характеристик магнитных цепей. Продолжаем!

Магнитная индукция. Линии магнитной индукции

Подробности
Просмотров: 1032

«Физика — 11 класс»

Электрическое поле характеризуется напряженностью электрического поля.
Напряженность электрического поля — это величина векторная.
Магнитное поле характеризуется магнитной индукцией.
Магнитная индукция — это векторная величина, она обозначается буквой .

Направление вектора магнитной индукции

За направление вектора магнитной индукци принимается направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.

Используя рамку с током или магнитную стрелку, можно определить направление вектора магнитной индукции в любой точке поля.
В магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке устанавливается по касательной к окружности, плоскость которой перпендикулярна проводу, а центр ее лежит на оси провода.

Правило буравчика

Направление вектора магнитной индукции устанавливают с помощью правила буравчика.Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.

Линии магнитной индукции

Магнитное поле можно показать с помощью линий магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым в любой их точке совпадают с вектором в данной точке поля. Линии вектора магнитной индукции аналогичны линиям вектора напряженности электростатического поля.

Линии магнитной индукции можно сделать видимыми, воспользовавшись железными опилками.

Магнитное поле прямолинейного проводника с током

Для пряого проводника с током линии магнитной индукции являются концентрическими окружностями, лежащими в плоскости, перпендикулярной этому проводнику с током. Центр окружностей находится на оси проводника. Стрелки на линиях указывают, в какую сторону направлен вектор магнитной индукции, касательный к данной линии.

Магнитное поле катушки с током (соленоида)

Если длина соленоида много больше его диаметра, то магнитное поле внутри соленоида можно считать однородным.
Линии магнитной индукции такого поля параллельны и находятся на равных расстояниях друг от друга.

Магнитное поле Земли

Линии магнитной индукции поля Земли подобны линиям магнитной индукции поля соленоида.
Магнитная ось Земли составляет с осью вращения Земли угол 11,5°.
Периодически магнитные полюсы меняют свою полярность.

Вихревое поле

Итак, магнитное поле — это вихревое поле, в каждой его точке вектор магнитной индукции указывает магнитная стрелка, направление вектора магнитной индукции можно определить по правилу буравчика.

Следующая страница «Модуль вектора магнитной индукции. Сила Ампера»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Магнитное поле и взаимодействие токов —
Магнитная индукция. Линии магнитной индукции —
Модуль вектора магнитной индукции. Сила Ампера —
Электроизмерительные приборы. Громкоговоритель —
Действие магнитного поля на движущийся заряд. Сила Лоренца —
Магнитные свойства вещества —
Примеры решения задач —
Краткие итоги главы

Направление вектора

Наглядно продемонстрировать силовые линии магнитного поля можно, если на стеклянный лист, сквозь который пропущен проводник с током, равномерно (в один слой) разложить мелкие железные опилки. После включения тока опилки намагничиваются, то есть приобретают свойства магнитных стрелок и устанавливаются вдоль силовых линий поля . Таким образом результат действия магнитного поля на магнитные стрелки (железные опилки) или рамку с током можно применить для определения направления вектора магнитной индукции .

Линии магнитной индукцииРис. 2. Демонстрация силовых линий магнитного поля от прямого провода с током с помощью железных опилок.

Направлением вектора магнитной индукции принято считать направление от южного полюса S к северному полюсу N магнитной стрелки, которая ориентируется беспрепятственно и устанавливается в магнитном поле.

Это направление совпадает с направлением положительной нормали (перпендикуляра) к замкнутому контуру с током. Для определения этого направления применяется “правило буравчика”, которое звучит так: вектор направлен в ту сторону, куда перемещалась бы рукоятка буравчика (с правой резьбой) если ввинчивать его по направлению тока в рамке (или в проводе).

Визуальное (графическое) представление магнитного поля получается, если начертить так называемые линии магнитной индукции. Линия, в любой точке которой вектор магнитной индукции направлен по касательной, называется линией магнитной индукции или линией напряженности магнитной индукции. Картину линий магнитной индукции для постоянных магнитов, рамки с током и катушки можно сделать видимой, снова воспользовавшись мелкими железными опилками как в случае с прямолинейным проводом.

Линии магнитной индукцииРис. 3. Линии магнитной индукции катушки, рамки с током, постоянных магнитов.

Исследования показали, что линии напряженности магнитной индукции всегда замкнуты в отличие от линий напряженности электрического поля. Из этого фундаментального свойства следует, что в природе не существует магнитных зарядов, подобных электрическим. Магнитное поле возникает (индуцируется) от движущихся электрических зарядов или от переменного электрического поля.

Что мы узнали?

Итак, мы узнали, что является источником магнитного поля. Магнитная индукция — основная силовая характеристика этого поля. Визуальное (графическое) представление магнитного поля получается, если начертить так называемые линии магнитной индукции. Линия, в любой точке которой вектор магнитной индукции направлен по касательной, называется линией магнитной индукции или линией напряженности магнитной индукции.

  1. /5

    Вопрос 1 из 5

Квантование магнитного потока

В 1961 году практически было установлено, что, если направить магнитный поток через закольцованный сверхпроводник, по которому протекает электричество, то величина Φ будет кратной кванту потока Φ0 = h/2e = 2.067833758*10-15Вб. Это значение в системе СИ.

Такой эксперимент выполнили американцы Дивер и Фейрбенк. Они выполнили квантование, используя трубку полой конструкции, пропуская по ней круговые токи сверхпроводящей природы. Их результат квантовой размерности оказался в два раза меньше. Это было обусловлено тем, что электроны в сверхпроводящей ситуации разбивались на пары. Частицы образовывали двойки с зарядом 2е. Именно движение этих пар составляет природу сверхпроводящего тока.

К сведению. Сверхпроводники – это материалы, у которых при понижении температуры до определённого значения резко падает сопротивление. Оно практически равно нулю, тогда можно говорить о сверхпроводящих свойствах. Металлы, которые являются отличными проводниками, – золото, серебро, платина, не приобретают сверхпроводящих способностей в таких условиях.

Линии магнитной индукции
Квантование магнитного потока

Оцените статью
( Пока оценок нет )
Добавить комментарий