Уровни автоматизированных систем
Выделяют три уровня автоматизированных систем управления:
Нижний уровень. Оборудование
На этом уровне внимание отводится датчикам, измерительным и исполнительным устройствам. Здесь производится согласование сигналов с входами устройств и команд с исполнительными устройствами
Средний уровень. Уровень контроллеров. Контроллеры получают данные с измерительного оборудования, а после передает сигналы для команд управления, в зависимости от запрограммированного алгоритма.
Верхний уровень – промышленных серверов и диспетчерских станций. Здесь осуществляется контроль производства. Для этого обеспечивается связь с низшими уровнями, сбор информации и мониторинг протекания технологического процесса. Этот уровень взаимодействует с человеком. Человек здесь производит контроль оборудования с помощью человеко-машинного интерфейса: графические панели, мониторы. Контроль за системой машин обеспечивает SCADA система, которая устанавливается на диспетчерские компьютеры. Данная программа собирает информацию, архивирует ее и визуализирует. Программа самостоятельно сравнивает полученные данные с заданными показателями, а в случае несоответствия проводит оповещение человека-оператора об ошибке. Программа производит запись всех операций, в том числе и действия оператора, которые необходимы в случае нештатной ситуации. Так обеспечивается контроль ответственности оператора.
Существуют также критичные автоматизированные системы. Это системы, которые реализуют различные информационные процессы в критичных системах управления. Критичность представляет собой вероятную опасность нарушения их стабильности, а отказ системы чреват значительными экономическими, политическими или другими ущербами.
Что же относится к критичным автоматизированным процессам? К критичным относят следующие системы управления: опасными производствами, объектами атомной отрасли, управления космическими полетами, железнодорожным движением, воздушным движением, управление в военных и политических сферах. Почему они критичны? Потому что решаемые ими задачи имеют критичный характер: использование информации с ограниченным доступом, использование биологических и электронных средств обработки информации, сложность технологических процессов. Следовательно, информационные автоматизированные системы становятся элементом критичных систем управления и в результате этого, получили принадлежность к этому классу.
Снижение полного сопротивления распределительной сети
Это один из эффективных методов снижения нелинейных искажений. Кабели и сборные шины имеют полное сопротивление, которое прямо связано с длиной линий. Увеличение сечения кабелей (проводов) снижает активное сопротивление распределительной сети, но не снижает ее индуктивность. Максимальное эффективное сечение жил кабелей (проводов) составляет приблизительно 95 кв. мм. С дальнейшим увеличением сечения кабелей их индуктивность остается относительно постоянной. Очевидно, что более эффективным будет использование параллельно соединенных кабелей (проводов). При возможности использования децентрализованной системы бесперебойного питания следует рассмотреть разделение всего инсталлируемого оборудования (т.е. устройств, входящих в состав защищаемой нагрузки) на секции, каждая из которых будет запитана от отдельного источника бесперебойного питания (ИБП).
Следует помнить о том, что во время профилактических, ремонтных и т.п. работ системы бесперебойного питания должны и могут быть переключены в режим обхода (Bypass). При этом возможно возрастание уровня искажений, т.к. нелинейная нагрузка напрямую будет подключена к первичному источнику переменного напряжения (генератор, трансформатор подстанции и т. п.). Форма напряжения сетевого электропитания часто бывает искажена из-за других нагрузок, не относящихся к критическим, но имеющих характеристики, подобные компьютерному и офисному оборудованию. Искажения формы напряжения электропитания, сгенерированные другим оборудованием, добавятся к искажениям от компьютерной нагрузки, которая была переключена на питание непосредственно от сети (на время профилактики или ремонта ИБП), создавая, таким образом, более высокие уровни искажений.
Литература
- ГОСТ 13109 — 97. Нормы качества электрической энергии в системах электроснабжения общего назначения.
- Капустин В.М., Лопухин А.А. Компьютеры и трехфазная электрическая сеть // Современные технологии автоматизации — СТА, №2, 1997, стр. 104-108.
- Dugan R.C., McGranaghan M.F., Beaty H.W. Electrical Power Systems Quality. McGraw-Hill, 1996. — 265 стр.
- Fiorina J.N. Inverters and Harmonics // Cahier Technique Merlin Gerin, no 159. — 19 стр.
- Yacamini R. Power System Harmonics. Part 3 — Problems caused by distorted supplies // Power Engineering Jounal, Oct., 1995, стр. 233-238.
- Harmonic Disturbances in Networks and Their Treatment // Cahier Technique Schneider Electric, no 152. — 25 стр.
- Forrester W. Networking in Harmony // Electrical Contractor, Nov. / Dec., 1996, стр. 38-39.
Контрольно-измерительные приборы, КИП контрольно измерительные приборы и автоматика, купить.
Контрольно-измерительные приборы
– это специальные устройства, главное назначение которых — измерение определенной физической величины.Контрольно-измерительные приборы и автоматика выполняют очень важные функции, позволяющие наблюдать за работоспособностью оборудования и на основе предоставленных данных, выполнять его обслуживание, а в случае необходимости, производить корректировку работы.
В перечень контрольно-измерительных приборов КИП
входит достаточное большое количество различных устройств, использующихся в различных областях деятельности человека, а именно: в строительстве, в тяжелой и легкой промышленности, в коммунальных службах и т.д.
Приборы КИП
имеют сложную классификацию и подразделяются в зависимости от:
· Конструктивного исполнения
: на переносные, стационарные, панельные, щитовые;
· Способа предоставления информации
: на регистрирующие, показывающие;
· Методики измерения
: на приборы сравнения, приборы прямого действия;
· Особенностей шкалы
: на приборы с равномерной шкалой, неравномерной, с безнулевой шкалой, с односторонней шкалой, двухсторонней (симметричной и несимметричной);
· Точности измерений
: на ненормируемые и нормируемые;
· Функционального назначения и области применения
: на 1) Контрольно-измерительные приборы, измеряющие давление – манометры, вакуумметры, напоромеры и др.; 2) Электроизмерительные приборы, предназначенные для измерения электрических параметров: однофазные, многотарифные, трехфазные счетчики электроэнергии, амперметры, вольтметры; 3)Контрольно-измерительные приборы , предназначенные для измерения плотности: ареометры, плотномеры; 4) Контрольно-измерительные приборы, предназначенные для измерения уровня: сигнализаторы уровня, уровнемеры контактные, радарные, для сыпучих продуктов и жидкостей; 5) Контрольно-измерительные приборы, предназначенные для измерения температуры: газовые, технические, цифровые, лабораторные термометры, термопреобразователи, инкубаторные индикаторы, термометры для испытаний нефтепродуктов; 6) Контрольно-измерительные приборы для снятия метрологических показателей: калибраторы давления, контроллеры давления, грузопоршневые манометры, устройства для калибровки и проверки измерительных приборов (газоанализаторов, приборов уровня и расхода).
Также существуют многие другие показатели, по которым можно классифицировать КИП и автоматика
занимается поставкой энергетического оборудования, такого как: дизель-генераторы, дизельные электростанции, электроагрегаты. А также осуществляет продажу запчастей для электростанций и различных комплектующих к ним, в том числе реализует контрольно-измерительные приборы и автоматику (КИПиА)
, представленную следующими позициями Амперметры – необходимы для измерения в амперах силы тока; Вольтметры – требуются для измерения напряжения; Омметры – применяются для измерения активных электрических сопротивлений; Счетчики наработки времени (счетчик моточасов), позволяют учитывать время работы оборудования, с момента включения до полного отключения. Бывают счетчики цифровые, электромеханические, электронные; Частотомеры – определяют частоту процесса.
Все это и многое другое вы всегда сможете заказать на сайте нашей компании.
Аналоговые и цифровые
Контрольно-цифровые инструменты могут быть как цифровыми, так и аналоговыми. Первые считаются более удобными. В них показатели силы, напряжения или тока переводятся в числа, затем выводятся на экран.
Но при этом внутри каждого такого прибора находится аналоговый преобразователь. Зачастую он представляет собой датчик, снимающий и отправляющий показания с целью преобразования их в цифровой код.
Хотя аналоговые инструменты менее точны, они обладают простотой и лучшей надежностью. А также существуют разновидности аналоговых инструментов и приборов, имеющих в своем составе усилители и преобразователи величин. По ряду причин они предпочтительнее механических устройств.
Определение понятия измерительных приборов
По мере изучения природных явлений человечество запустило различные технологические процессы, которые нуждаются в контроле и измерении. Для этого нужны специальные устройства, которые могут осуществлять постоянный контроль и управление при проведении различных технологических процессов.
Измеритель — это устройство, основное предназначение которого сравнить измеряемую величину с общепринятой единицей измерения. Эти приборы измеряют физические величины, различные процессы, технические параметры. Встречаются механические и электрические. Принцип работы последних основывается на том, что фактически любой физический параметр можно преобразовать в электрический сигнал, который несложно обработать и проанализировать.
На основе полученных данных можно сделать выводы про состояние окружающей среды, о происходящих физических явлениях, параметрах и величинах, свойственных измеряемой области.
В настоящее время измерения производятся не только в научных лабораториях и на больших предприятиях, но также в мелких мастерских и обычном быту, даже если, на первый взгляд, эти устройства незаметны. Они широко применяются в бытовой технике и в привычных предметах домашнего обихода.
Невнимательное отношение к показаниям измерений, слабая подготовка специалистов ведёт к ошибкам на производстве, получению некачественной продукции и угрожает безопасности людей.
Виды измерительных приборов
В зависимости от того, какие бывают измерительные инструменты, их названия могут отличаться в разных классификациях.
Обычно приборы могут быть следующего вида:
- Аналоговые измерительные инструменты и устройства, в которых сигнал на выходе является некоторой функцией измеряемой величины.
- Цифровые устройства, где сигнал на выходе представлен в соответствующем виде.
- Приборы, которые непосредственно регистрируют результаты измерений снимаемых показаний.
- Суммирующие и интегрирующие. Первые выдают показания в виде суммы нескольких величин, а вторые позволяют проинтегрировать значение измеряемой величины при помощи другого параметра.
2.1. Критерии классификации
Классификация АСУ существенным образом зависит от критериев классификации.
По виду используемой управляющим устройством информации различают разомкнутые и замкнутые АСУ: в разомкнутых системах отсутствует обратная связь между выходом объекта управления и входом управляющего устройства. В таких системах управляемая величина не контролируется. При наличии обратной связи объект управления и управляющее устройство образуют замкнутый контур, обеспечивающий автоматический контроль за состоянием объекта управления.
По характеру изменения задающего воздействия АСУ можно отнести к следующим видам:
— автоматической стабилизации, задающее воздействие в которых постоянно; эти системы предназначены для поддержания постоянства некоторого физического параметра (температуры, давления, скорости вращения и т.д.);
— программного управления, задающее воздействие в которых изменяется по какому–либо заранее известному закону (например, по определенной программе может осуществляться изменение скорости вращения электропривода, изменение температуры изделия при термической обработке и т.д.);
— следящие, задающее воздействие в которых изменяется по произвольному, заранее неизвестному закону (используются для управления параметрами объектов управления при изменении внешних условий).
В последние годы все большее значение приобретают адаптивные АСУ, характеризующиеся действием на объект управления каких–либо абсолютно неизвестных факторов. В результате возникает необходимость решения задачи управления в условиях неопределенности исходных данных для принятия решения об управляющих воздействиях. Эти системы могут приспосабливаться к изменениям внешней среды и самого объекта управления, а также улучшать свою работу по мере накопления опыта, т.е. информации о результатах управления.
В свою очередь адаптивные АСУ делятся на:
— оптимальные, которые обеспечивают автоматическое поддержание в объекте управления наивыгоднейшего режима;
— самонастраивающиеся, параметры объекта управления у которых не остаются неизменными, а преобразуются при изменении внешних условий;
— самоорганизующиеся, алгоритм работы у которых не остается неизменным, а совершенствуется при изменении параметров объекта управления и внешних условий;
— самообучающиеся, которые анализируют накопленный опыт управления объектом и на основании этого автоматически совершенствуют свою структуру и способ управления.
По характеру действия АСУ подразделяют на непрерывные и дискретного действия. В непрерывных АСУ при плавном изменении входного сигнала также плавно изменяется и выходной сигнал. В дискретных АСУ при плавном изменении входного сигнала выходной сигнал изменяется скачкообразно. Методы управления, основанные на применении цифровой техники, всегда приводят к дискретным АСУ.
По характеру изменения параметров сигналов АСУ можно разделить на линейные и нелинейные, стационарные и нестационарные. По количеству самих параметров АСУ являются одномерными или многомерными (многопараметрическими).
Необходимо отметить, что классификацию АСУ можно построить и на основе других критериев, например, можно классифицировать АСУ по физической сущности системы или ее основных звеньев, по мощности исполнительного устройства и т.д. Каждый из упомянутых способов классификации АСУ чаще всего является независимым от остальных. Это означает, что каждый из них можно представить как шкалу в многомерном фазовом пространстве, тогда конкретным АСУ в этом пространстве будут соответствовать точки или определенные области.
Права и обязанности слесаря КИПиА
Среди основных обязанностей слесаря по КИП и автоматике:
- Проверка и регулировка электроустановок и прочих измерительных приборов всех типов и разновидностей;
- Обнаружение и ремонт неисправностей в контрольно-измерительной технике;
- Настройка, тестирование и контроль автоматизированных систем и измерительного оборудования;
- Регулировка работы радио, радаров и прочей пеленгующей техники;
- Осуществление математической обработки информации от измерительных устройств;
- Произведение замеров и сборка электронных схем, контролирующих работу теплового оборудования;
- Предъявление требований оптимального и правильного использования контрольно-измерительной техники к тем рабочим, которые эксплуатируют ее;
- В срок и качественно выполнять все вышеперечисленные обязанности.
Очевидно, что кроме обязанностей слесарю и электромонтеру доступны также и некоторые виды прав, заключающиеся в:
- Сотрудничестве по любым вопросам технического характера с работниками других подразделений;
- Праве на обращение за любой документацией и методическими материалами, касающимися его деятельности;
- Праве на своевременное направление предложений по улучшению качества работы своим руководителям;
- Бесплатное и своевременное обеспечение инструментарием и средствами индивидуальной защиты
Вам это будет интересно Проверка симистора
Тестирование измерительных систем
Виды приборов
Различают два вида столовых приборов: основные, которые используются во время самого приема пищи, а также вспомогательные, которые созданы для коллективного пользования (например, чтобы переложить еду из основного блюда в свою тарелку).
К основной группе относят:
Закусочный прибор, в который входят вилка и нож. Его подают к холодным блюдам и закускам, а также к некоторым горячим яствам (блинам, яичнице). Длина ножа примерно ровна диаметру закусочной тарелки.
Рыбный прибор, который также состоит из ножа и вилки. Его применяют с горячими рыбными блюдами. Он отличается от закусочного — нож слегка напоминает лопатку (тупой), а вилка с коротковатыми зубцами.
Столовый прибор — вилка, ложка и нож. С помощью него можно кушать первые и вторые горячие блюда. Длина ножа примерно равна диаметру столовой тарелки, а вилка и ложка — немного короче.
Десертный прибор. В него входят специальные ложка, вилка и нож для сладких блюд. Такой нож немного уже, чем закусочный и кончик заострен, а у вилки три зубца. Эти две составные части прибора используют для сыра, пирога, творога, яблочного шарлота. Ложкой можно кушать блюда, которые не нужно разрезать.
Фруктовый прибор также состоит из ножа и вилки, которые немного отличаются от десертных — они меньше, а вилка имеет два зубца. Интересно, что обе детали с одинаковой ручкой.
Палочки для еды — приспособление, которое пришло в славянскую кулинарию с Восточных стран. Подаются они к блюдам китайской, японской, корейской и вьетнамской кухни, при этом обычные столовые приборы не убираются.
Ложки — миниатюрная кофейная и чуть больших размеров чайная, а также длинная ложка для холодных напитков (например, чая).
К вспомогательным приборам относят:
Нож для масла с широким, изогнутым полудугой лезвием. Его кладут на правый бок пирожковой тарелки.
Нож-вилка — серповидная форма с зубцами на конце. Подают для разрезания сыра.
Нож-пила для нарезания лимонов, а также вилочка для перекладывания ломтиков фрукта (с двумя острыми зубцами).
Приборы для рыбы и морепродуктов: двухрожковая вилка для селедки, вилка для шпрот (основание в виде лопатки, 5 зубцов), вилка и нож для крабов, креветок, раков (с двумя зубцами на конце), вилка для устриц, мидий и холодных рыбных коктейлей (три зубца, левый очень мощный для отделения мякоти от тела морских животных).
Ложечка для соли диаметром не больше 1 см.
Ложка для салата, иногда с тремя зубцами на конце, немного больше, чем столовая.
Половники для разливания супов, сладких блюд и молока (бывают разных размеров).
Щипцы: большие (для мучных кондитерских изделий), малые (для сахара, мармелада, шоколада, зефира), для колки орехов (соединенные V-образно, очень крепкие), для льда (U-образная скоба с двумя зазубленными лопатками), для спаржи (часто подается со специальной решеткой для спаржи).
Ножницы для винограда для отрезания ягод от грозди.
Лопатки: икорная (имеет форму «плоского совка»), прямоугольная (для мясных и овощных блюд), фигурная с прорезями (для рыбных блюд), фигурная большая (для кондитерских изделий), фигурная малая (для паштета).
Высшие гармоники в электросетях
Постоянный рост количества нелинейных потребителей в наших электрических сетях приводит к повышенному “загрязнению электросетей”. Обратное воздействие на сеть является для энергетики такой же проблемой, как загрязнение воды и воздуха для экологии.
В идеальном случае на выходных клеммах генераторы выдается чисто синусоидальный ток. Синусоидальное напряжение рассматривается как идеальная форма переменного напряжения, любое отклонение от него считается сетевой помехой.
Рис.1 Обратные воздействия на сеть, вызванные преобразователями частоты.
Все больше потребителей получают из сети несинусоидальный ток. Быстрое преобразование Фурье (БПФ) этих “загрязненных” токовых волн показывает наличие широкого спектра колебаний с гармониками различного порядка, которые обычно называют высшими гармониками.
Рис.2 Анализ высших гармоник (Быстрое преобразование Фурье)
Высшие гармоники наносят вред электрическим сетям, они опасны для подключенных потребителей так же, как загрязненная вода вредна для организма человека. Они приводят к перегрузкам, снижают срок службы и, при определенных условиях могут вызывать преждевременный выход из строя электрических и электронных потребителей.
Нагрузка высшими гармониками является основной причиной невидимых проблем с качеством напряжения, приводящих к огромным расходам на ремонт или покупку нового оборудования взамен поврежденного. Недопустимо высокое обратное воздействие на сеть и вызванное им низкое качество напряжения могут, таким образом, вызвать сбои производственного процесса вплоть до остановки производства.
Высшие гармоники – это токи или напряжения, частота которых превышает основное колебание 50/60 Гц и кратна этой частоте основного колебания. Высшие гармоники тока не вносят вклад в активную мощность, но оказывают только термическую нагрузку на сеть. Поскольку токи высших гармоник протекают в дополнение к “активным” синусоидальным колебаниям, они обеспечивают электрические потери в рамках электроустановки, что может привести к термической перегрузке. Дополнительные потери в потребителе электроэнергии приводят, кроме того к нагреву и перегреву, а также к сокращению срока службы оборудования.
Оценка нагрузки высшими гармониками, как правило, выполняется в точке подключения (или передачи в сеть электроснабжения общего пользования) соответствующей организации по энергоснабжению. Все чаще эти точки называют Point of Common Coupling (PCC). При определенных условиях может потребоваться определение и анализ нагрузки высшими гармониками со стороны определенного оборудования или групп оборудования для выявления внутренних проблем с качеством электрической сети и их причин, их вызывающих.
Рис.3 Поврежденные высшими гармониками конденсаторы
Для оценки нагрузки высшими гармониками используются следующие параметры:
Коэффициент суммарных гармонических искажений (THD)
Коэффициент суммарных гармонических искажений (THD) или общее гармоническое искажение позволяет квалифицировать размер долей, возникающих в результате нелинейного искажения электрического сигнала. Это отношение эффективного значения высших гармоник к эффективному значению первой гармоники. Значение THD используется в сетях низкого, среднего и высокого напряжения. Обычно для искажения тока используется коэффициент THDi , а для искажения напряжения – коэффициент THDu.
Коэффициент искажения для напряжения
- M = порядковый номер высшей гармоники
- M = 40 (UMG 604, UMG 508, UMG 96RM)
- M = 63 (UMG 605, UMG 511)
- Основная гармоника fund соответствует n = 1
Коэффициент искажения для тока
- M = порядковый номер высшей гармоники
- M = 40 (UMG 604, UMG 508, UMG 96RM)
- M = 63 (UMG 605, UMG 511)
- Основная гармоника fund соответствует n = 1
Общее искажение тока (TDD)
Особенно в Северной Америке термин TDD регулярно используется в связи с проблемами, вызванными высшими гармониками. Это величина, связанная с THDi, но в этом случае определяется отношение доли высших гармоник к доле основных колебаний номинального значения тока. Таким образом, TDD определяет отношение между высшими гармониками тока (аналогично THDi) и возникающим на протяжении определенного периода эффективным значением тока при полной нагрузке. Обычно период равен 15 или 30 минутам.
TDD (I)
- TDD определяет отношение между высшими гармониками тока (THDi) эффективным значением
- тока при полной нагрузке.
- IL = полный ток нагрузки
- M = 40 (UMG 604, UMG 508, UMG 96RM)
- M = 63 (UMG 605, UMG 511)
Анализ гармоник (тока и напряжения) могут проводить практически все анализаторы ПКЭ Janitza, за исключением UMG 96L.