Фототранзистор своими руками: ltr 4206e, фт 1к, arduino

Особенности устройства

Фотореле имеет вид датчика, который работает благодаря наличию у него фотоэлемента. Через него датчик оценивает уровень освещенности на улице и, при совпадении заданных параметров, активирует включение света в системе уличного типа освещения.

Регулятор на корпусе

Схема фотореле не очень сложна и умещается в небольшой компактный корпус, из которого выходят три проводника. Они необходимы для подключения прибора к сети питания. Они также могут использоваться для управления включением аппарата в зависимости от выставленного в настойках уровня освещенности. Такой датчик может использоваться в разных ситуациях. Но наиболее часто он применяется для создания уличного типа освещения. Сегодня очень распространены модели, которые имеют регулятор. Он используется для управления работой прибора и более точной его настройки. Благодаря регулятору можно добиться правильной работы устройства в каждой заданной ситуации.

Выставляя регулятор на «-», датчик будет включать освещение только ночью, а при установке на «+» — когда только начинает смеркаться. Многие производители рекомендуют устанавливать регулятор на срединное положение. Это обеспечит более стабильную работу устройства. Для более эффективного управления работой датчика нужно настроить несколько параметров:

  • диапазон чувствительности света. Его надлежит выставлять в пределе от 5 до 50 Люкс;
  • мощность — от 1 до 3 КВт;
  • максимальная нагрузка сети – 10 А.

Также для правильного подключения важно знать, какие виды фотореле бывают. Самое главное отличие таких датчиков заключается в расположении фотоэлемента:. Датчик с выносным фотоэлементом

Датчик с выносным фотоэлементом

  • датчик со встроенным фотоэлементом. Такие модели могут иметь встроенный регулятор и таймер. В данном случае подключение прибора происходит по обычной схеме. Для подключения подойдет стандартная электрическая схема для фотореле;
  • датчик с выносным фотоэлементом. Здесь конструкция устройства состоит из двух частей: фотоэлемент, что выносится на улицу и переключатель, который стоит устанавливать отдельно. Для подключения их между собой нужно использовать кабель.

Для каждой модели характерна своя схема фотореле, которую следует учитывать для дальнейшего подключения прибора. Еще одним вариантом подключения является способ через таймер. С помощью такого устройства можно легко запрограммировать датчик на отключение или включение регулятора. В результате включение света будет происходить через определенные интервалы времени. Это позволяет значительно сэкономить на потреблении электроэнергии.

Ключевые параметры фототранзистора

Токовая и спектральная чувствительности

Токовая или монохроматическая чувствительность

Фототранзистор своими руками: ltr 4206e, фт 1к, arduino

— фотопоток;

Спектральная чувствительность — параметр фототранзистора, используемый для считывания и распознавания элементов. Данная чувствительность имеет зависимость от длины волны светового излучения.

Темновой ток и быстродействие

Темновой ток (Iт) — небольшой электро-ток, протекающий через оптический чувствительный детектор.

Iт = Iф + Iобщ, где

Iф — фототок;

Iобщ — общий ток.

Быстродействие — параметр фототранзистора, который определяет способность прибора выполнять работу с необходимой скоростью.

В данном компоненте фототранзистор уступает фотодиодам, так как его рабочий диапазон частот ограничен несколькими сотнями Килогерц, что влияет на временной промежуток модернизации.

Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.

Фото — фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор:

  1. Охранные системы (в основном, используются ИК-фототранзисторы);
  2. Кодеры;
  3. Компьютерные логические системы управления;
  4. Фотореле;
  5. Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
  6. Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:

  1. Могут производить больший ток, чем фотодиоды;
  2. Эти радиодетали сравнительно очень дешевые;
  3. Могут обеспечить мгновенный высокий ток на выходе;
  4. Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:

  1. Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
  2. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
  3. Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Проверка фотодиода мультиметром

Рассмотрим, как проверить мультиметром фотодетекторы. Тестером замеряют значения сопротивления (обратного и прямого) в процессе освещения/затемнения диода. Мультиметр (или омметр) переводят на отметку 200 кОм.

Иногда встречается характерный дефект — хаотическое изменение тока («ползучесть»). Для обнаружения неполадки собирают простую схему (смотреть рисунок ниже) и замеряют величину обратного тока на протяжении нескольких минут. Если ток неизменный, то деталь рабочая. Проверять можно запчасть на плате, но возможны погрешности, поэтому всегда рекомендована выпайка.

Как выбрать фотореле

Обратите внимание, что у каждого приспособления выделяется область применимости. Для нашего случая это пропускная мощность

Фотореле не способно пропустить бесконечно большой ток, расплавится силовой элемент

Важно понять, что иногда исключительно ключом не обойдёшься. Оригинальный выход – замена разрядных и обычных ламп на светодиодные либо энергосберегающие

Подобные приборы потребляют энергии на порядок меньше, а значит, допустимо поставить количеством в 10 раз больше.

Когда формируется схема подключения фотореле для уличного освещения, требуется продумать вопросы питания и мощности. Согласитесь, неудобно ставить ряд управляющих ключей. Они портят внешний вид экстерьера, не несут смысловой нагрузки, разве что выделить несколько контуров, предназначенных включаться и выключаться в разное время. Любой собственник частного домовладения знает факты:

Дом в период разработки конструкции обзаводится электрическим проектом. Нельзя брать и что-то менять без сонма согласовательных работ. Следовательно, чем меньше стоит фотореле и влияет на схему, тем лучше. Тогда смена лампочек накала или разрядных на светодиодные или энергосберегающие смотрится уместно

Главное, что пропускаемый ток уменьшится, удастся сэкономить на реле, а также обойтись единственным на все поместье.
Важной частью считается квота энергии. По законам РФ собственник имеет право на определённую долю энергии

Это называется квотой. Если свою долю не выбрать – что учитывается уже в проекте электрификации – потом за положенное придётся (!) платить. Собственную квоту лучше знать заранее. А превышать нельзя опасаясь прогрессирующего штрафа. Следовательно, выгодно забрать ровно столько, сколько даёт закон. Сбережение энергии за счёт внешнего освещения позволит чуть больше приборов разместить внутри здания.

Фототранзистор своими руками: ltr 4206e, фт 1к, arduino

Проверка действия фотореле

Популярные статьи  В чем может быть проблема, если есть горит только люстра, а светильники не горят?

Обратите внимание при установке фотореле, что в место будущей дислокации должен беспрепятственно проникать свет. Для подстройки уровня включения с нижней стороны прибора устанавливается специальный винт

Регулируя его положение, возможно беспрепятственно настроить прибор на нужное время. Разумеется, многое зависит от погоды. Если утро пасмурное, свет проработает дольше. И наоборот – когда рассвет солнечный, освещение выключится раньше.

Если это не нравится или просто не требуется, потребуется последовательно включить реле времени (таймер). Современные версии отличаются возможностью программировать расписание по дням недели и выбирать варианты. Иногда выручит датчик движения. Это полезно в темных галереях, где неэффективно ставить выключатели — сложно найти. Датчик определит, что приближается человек, и выполнит нужную работу.

Фототранзистор своими руками: ltr 4206e, фт 1к, arduino

Схема сбора реле

Схема фотореле на фоторезисторах. Принцип работы и область применения

Фоторезистор, представляет собой непроволочный полупроводниковый резистор, омическое сопротивление которого определяется степенью освещенности . В основе принципа действия фоторезисторов лежит явление фотопроводимости полупроводников. Фотопроводимость — увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости — увеличение концентрации носителей заряда — электронов в зоне проводимости и дырок в валентной зоне. Схема устройства фотоэлементов с внутренним фотоэффектом, носящих название фотосопротивлений (ФС) или фоторезисто¬ров, приведена на рис. 16-а. Фотосопротивление представляет собой стеклянную пластинку, покрытую тонким слоем полупроводникового материала (сернистого свинца, сернистого висмута, сернистого кадмия), на котором расположены токопроводящие электроды. Сущность внутреннего фотоэффекта сводится к следующему. Известно, что электропроводимость связана с количеством носите¬лей заряда, который имеет тот или иной материал. В полупровод¬никах количество носителей электрических зарядов может увеличиваться вследствие поглощения энергии извне, в частности под воздействием световой энергии. Увеличение количества носителей электрических зарядов в мате¬риале повышает, его способность проводить электрический ток.

Фототранзистор своими руками: ltr 4206e, фт 1к, arduino
Рис.16 Фотосопротивление В результате этого уменьшается электрическое сопротивление осве-щаемого материала. Отличительная особенность фотосопротивлений от фотоэлемен¬тов с внешним фотоэффектом заключается в том, что при внешнем фотоэффекте электроны покидают пределы освещенного материала, а при внутреннем фотоэффекте они остаются внутри материала, увеличивая тем самым количество носителей электрических зарядов. Изменение проводимости в полупроводниках под воздействием света может быть очень большим. В некоторых материалах при переходе от темноты к интенсивному освещению сопротивление уменьшается в десятки раз и соответственно изменяется величина тока в цепи фотосопротивлений (рис. 16-б). Светочувствительный слой полупроводникового материала в таких сопротивлениях помещен между двумя токопроводящими электродами. Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз (у некоторых типов фотосопротивлений оно уменьшается на два- три порядка). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернистосвинцовые, сернистокадмиевые, сернисто-висмутовые и поликристаллические селенокадмиевые. Фотосопротивления обладают высокой чувствительностью, стабильностью, экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы. Основной областью применения фоторезисторов является автоматика, где они в некоторых случаях с успехом заменяют вакуумные и газонаполненные фотоэлементы. Обладая повышенной допустимой мощностью рассеивания по сравнению с некоторыми типами фотоэлементов, фоторезисторы позволяют создавать простые и надежные фотореле без усилителей тока. Такие фотореле незаменимы в устройствах для телеуправления, контроля и регулирования, в автоматах для разбраковки, при сортировке и счете готовой продукции, для контроля качества и готовности самых различных деталей. Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину. В измерительной технике фоторезисторы применяются для измерения высоких температур, для регулировки температуры в различных технологических процессах. Контроль уровня жидкости и сыпучих тел, защита персонала от входа в опасные зоны, контроль за запыленностью и задымленностью самых различных объектов, автоматические выключатели уличного освещения и турникеты в метрополитене — вот далеко не полный перечень областей применения фоторезисторов.

Схема включения фоторезисторов:

Рис.17 Схема фотореле на фоторезисторе При определенном освещении сопротивление фотоэлемента уменьшается, а, следовательно, сила тока в цепи возрастает, достигая значения, достаточного для работы какого- либо устройства (схематично показано в виде некоторого сопротивления нагрузки).

Фотосопротивление — тип

Фотоэлемент с внутренним фотоэффектом ( фотосопротивление.| Вентильный фотоэлемент.| Регулятор температуры типа, / v.

Фотосопротивления типа ФС-4 ( сернисто-свинцовые) и ФС-К.

Зависимость эдс шумов от приложенного напряжения у ФС-А1.

Фотосопротивления типа ФС-А удобны в обращении. Они сконструированы таким образом, что их можно включать в самую обычную радиоламповую панель. При работе с ними следует лишь учитывать, что их не рекомендуется применять в условиях значительно повышенной влажности. Кроме того, нужно иметь в виду, что слишком повышенное напряжение, приложенное к фотосопротивлению, может привести к выходу его из строя.

Фотосопротивления типов ФС-КО, ФС-К1 и ФС-К2 допускают рабочие токи порядка 1 — 2 ма при длительной эксплуатации и 20 — 30 ма — в импульсном режиме.

Удельная чувствительность фотосопротивления типа ФСК-4 составляет 6000 мка / лм-в. Напряжение, приложенное к нему, равно 20 в.

Удельная чувствительность фотосопротивления типа ФСК-4 составляет 6000 мка / лм — в. Напряжение, приложенное к нему, равно 20 в.

Большим недостатком фотосопротивлений типа ФС-К является значительная инерционность.

Схемы включения фотосопротивлений.

Наибольшее распространение получили фотосопротивления типа ФС-КО, ФС-К1, ФС-К2, ФС-К6, ФС-КМ и др. изготовляемые из сернистого кадмия. Максимум чувствительности этих фотосопротивлений расположен в области видимого света. Фотосопротивления этого типа отличаются большой чувствительностью. Фотосопротивления ФСК-П и ФСК-Г2 герметизированы.

Максимальная интегральная чувствительность фотосопротивлений типа ФС-А превышает чувствительность вакуумных фотоэлементов типа СЦВ в 300 раз, для фотосопротивлений ФС-К это превышение достигает 105 раз, а для ФС-Д — в 1 5 105 раз. Благодаря большой мощности рассеяния фотосопротивления могут быть использованы в схемах без применения усилителен, так как ток через них при длительном режиме их работы может достигать 1 ма, а в импульсном режиме — 30 — 50 ма. В схеме фотореле могут быть использованы обычные электромагнитные реле телефонного типа.

Для дозиметрии наиболее подходят фотосопротивления типа ФСК-М, чувствительные к гамма — и рентгеновым лучам. Для фотометрии могут быть применены различные типы фотосопротивлений-в зависимости от требуемой спектральной характеристики.

Схема дозиметрической установки с полупроводниковым датчиком для измерения слабых интенсивностей и доз рентгеновского излучения.

Для дозиметрии наиболее подходят фотосопротивления типа ФСК-М, чувствительные к гамма — и рентгеновым лучам. Для фотометрии могут быть применены различные типы фотосопротивлений в зависимости от требуемой спектральной характеристики.

В последнее время разработаны сульфидо-свинцовые фотосопротивления типа В. Они позволяют регистрировать излучение очень слабых источников радиации, имеющих температуру лишь 100 С.

Выносной прибор

Фотореле с выносным фотоэлементом

Отдельно стоит отметить, что существуют особые виды фотореле, у которых фотоэлемент выносится отдельно.

Здесь существуют свои особенности и установка такого прибора несколько отлична:

  • механизм управления и основной блок будут находиться друг от друга на достаточном расстоянии. Расстояние между этими элементами может достигать 100 м;
  • электрический щит с установленным блоком фотореле можно разместить в любом месте, где вам захочется.
Популярные статьи  Как правильно выбрать люстру?

Благодаря такой конструкции вы получите возможность поместить устройство в более защищенное от различных климатических особенностей место. В результате датчик прослужит вам намного дольше, чем модели со встроенными фотоэлементами. Любой вариант фотореле можно сделать своими руками. Главное правильно потом установить прибор и подключить его, чтобы он смог эффективно исполнять свои функции для включения освещения на улице в нужное время.

Пошаговая инструкция по монтажу

Сразу же хотелось бы немного отойти от темы и посоветовать Вам одновременно осуществлять подключение фотореле и датчика движения для освещения. В паре эти два устройства позволят включать светильник при наступлении темноты, только в том случае, если в зоне обнаружения появился человек. Если на участке никого не будет, то лампочки загораться не будут, что позволит значительно сэкономить электроэнергию. Способ установки зависит от того, какой класс защиты и тип крепления сумеречного выключателя света Вы купили.

На сегодняшний день существуют различные варианты изготовления, а именно:

  • с креплением на DIN-рейку, на стену либо на горизонтальную поверхность;
  • уличный либо комнатный вариант использования (зависит от класса защиты IP);
  • фотоэлемент встроенный либо внешний.

В инструкции мы предоставим для примера установку фотореле для уличного освещения с настенным креплением. Подключение осуществляется на стенде для удобства, тем более что это всего лишь пример.

Итак, для того, чтобы самому подключить фотореле к светильнику, Вы должны выполнить следующие пункты:

  1. Отключаем электроэнергию на вводном щитке и проверяем наличие тока в распределительной коробке, от которой будем вести провод.
  2. Протягиваем питающий провод к месту установки фотореле (рядом с осветительным прибором). Рекомендуем Вам для подключения сумеречного выключателя использовать трехжильный провод ПВС, который зарекомендовал себя как надежный и не слишком дорогой вариант проводника.
  3. Зачищаем жилы от изоляции на 10-12 мм, чтобы подключить их в клеммы.
  4. Создаем отверстия в корпусе под заведение жил для того, чтобы подключить фотореле к сети и светильнику.
  5. Чтобы повысить герметичность корпуса, крепим в вырезанных отверстиях специальные резиновые уплотнители, защищающие от попадания пыли и влаги внутрь. Кстати, размещать сумеречный выключатель нужно таким образом, чтобы вводные отверстия были снизу, что предотвратит проникновение влаги под крышку.
  6. Осуществляем подключение фотореле для уличного освещения согласно электрической схеме, которую мы предоставили выше. Как видно на фото, вводная фаза подключается к разъему L, а вводная нейтраль к N. Для заземления предназначена отдельная винтовая клемма с соответствующим обозначением.
  7. Отрезаем нужную длину провода для подключения фотореле к лампочке (в реальности это может быть даже светодиодный прожектор). Зачищаем изоляцию также на 10-12 мм и подсоединяем к клеммам N’ и L’ соответственно. Второй конец проводника подводим к источнику света и присоединением к клеммам патрона. Если корпус светильника не проводит ток, заземление подключать не нужно.
  8. Установка и подключение окончены, переходим к настройке фотореле своими руками. Тут ничего сложного нет, в комплекте присутствует специальный черный пакетик, который необходимо для того, чтобы сымитировать ночь. На корпусе датчика освещенности можно увидеть регулятор (подписан аббревиатурой LUX), который служит для выбора интенсивности освещения, при котором произойдет срабатывание реле. Если Вы желаете сэкономить электроэнергию, установите поворотный регулятор на минимум (о). В этом случае сигнал о включении будет подаваться при полной темноте на улице. Обычно регулятор находится рядом с винтовыми клеммами, немного левее и выше (как показано на фото).
  9. Последний шаг подключения фотореле – крепление защитной крышки и включение электроэнергии на щите. Как только Вы это сделаете, можно переходить к тестированию устройства.

Вот и все, что хотелось рассказать Вам о том, как установить и подключить фотореле своими руками. Также рекомендуем Вам просмотреть наглядный видео урок, в котором подробно показывается вся сущность электромонтажа.

Инструкция по подсоединению фотореле фирмы Feron

Напоследок следует сказать о том, какие производители сумеречных выключателей являются наиболее качественными. На сегодняшний день рекомендуется отдавать предпочтение продукции от таких компаний, как Legrand (легранд), ABB, Schneider electric и IEK. Кстати, у последней фирмы есть довольно надежная модель – ФР-601, которая имеет множество положительных отзывов на форумах.

Похожие материалы:

Как подключить сумеречное фотореле для уличного освещения

  • Схема подключения прожектора к фотореле и датчику движения
  • Способы соединения проводов в распределительной коробке
  • Как заменить электропроводку в квартире

Как ведётся подключение фотореле

Собственно, на картинке приведён пример, как подключать фотореле. Добавим, что, как правило, присутствует три провода, исходящие из корпуса. Назначение:

Фототранзистор своими руками: ltr 4206e, фт 1к, arduino

Схема подключение реле

  1. Красный – фаза, уходящая на лампы освещения.
  2. Чёрный – фаза, приходящая от источника питания 220 В.
  3. Зелёный – земля.

Набор проводов фотореле может состоять и из прочих цветов. К примеру, вместо красного коричневый. Придётся почитать инструкцию на фотореле, допустимо попробовать незамысловатый метод: первичная обмотка трансформатора должна без сложностей звониться. Реле может быть нормально разомкнутым, не пропускать ток. Сопротивление первичной обмотки не будет нулевым. Даже для постоянного тока мультиметра. Проведите измерение, и удастся отыскать землю. Что касается фазы, если подать напряжение не туда (реле нормально замкнутое), хватает прикрывания прибор крышкой, чтобы цепь перешла в непонятное состояние. Рекомендуем в случае отсутствия инструкции просто снять крышку и посмотреть, куда идут провода. Фазный делится надвое: первая ветвь пойдёт минуя ключ (реле, тиристор) на выход, вторая послужит для питания трансформатора. Питание подайте на конец, не отделенный от трансформатора ключом. Оставшийся провод — земля.

Посмотрите на рисунок, где авторы изобразили схему подключения фотореле. Все они однотипны, смело берите на вооружение. Выдержан цвет проводов из нашего примера. На практике гамма порой отличается, но по описанию становится понятно назначение.

Фототранзисторы

Фототранзисторы отличаются от фотодиодов дополнительным усилением фототока на эмяттерном р-п переходе. Фототранзисторы могут работать как фотодиоды (режим с плавающей базой), так и в транзисторном режиме с источником смещения в базовой цепи. Вывод эмиттера фототранзистора маркируется цветной точкой на корпусе или цветной меткой на проволочном выводе. Фототранзисторы выпускают в металлостеклянном корпусе с входным окном базы в двух конструктивных оформлениях, как с отдельным электрическим выводом базы, так и без него. Основные параметры фототранзисторов приведены в таблице, внешний вид фототранзисторов показан на рисунке 1. Тип

Площадь фото-чувстви-тельного элемента, мм2 Основные параметры при температуре 20±5°С
Диапазон спектральной характеристики дельта лямбда,мкм Максимальная спектральная характеристика дельта лямбда, max, мкм Рабочее напряжение Uр, В Темновой ток Iт, мкА Интегральная токовая чувствительность S1 инт, мкА/Лк, не менее Ипульсная постоянная времени tи, с, не более Масса, г не более
ФТ-1К 2,8 0.5 … 1.12 0.8 … 0.9 5 3 (0.4) 8e-5 0.9
ФТ-2К 2,8 0.5 … 1.12 0.8 … 0.9 5 3 (0.4) 8e-5 0.9
ФТ-1Г 3 0.4 … 1.8 1.5 … 1.6 1 … 5 300 0.2 2e-4 1.5
ФТ-2Г 1 0.4 … 1.8 1.5 … 1.6 12 … 24 500 2 1e-5 1.5
ФТ-3Г 3 0.4 … 1.8 1.5 … 1.6 10 … 12 1000 2 … 7 1e-4 1.5
ФТГ-3 3 0.4 … 1.8 1.5 … 1.55 5 … 10 60 1 1(2 … 10)e-5 1.8
ФТГ-4 3 0.4 … 1.8 1.5 … 1.55 5 … 10 40 3 3(2 … 10)e-5 1.8
ФТГ-5 3 0.4 … 1.8 1.5 … 1.55 5 … 10 50 1 (1 … 2)e-5 1.8
Популярные статьи  Регистраторы аварийных процессов в электрических сетях

Рис. 1

Щелкните мышью для увеличения

ТИП Фототок IF,мкА Темновой ток IT,мкА Время нарастания импульса tн,нС Обратное напряжение UОБР(UНАС) В Режим Измерения
КТФ102А 200 1.0 500 50 (0.5) Ее=60мВт/ср RНАГР=15 кОм
КТФ102А1 800 0,5
КТФ102А2
КТФ104А 150 1.0 800 0,5 Ее=7 Лк
КТФ104Б 100 5.0
КТФ104В 50

(C) МРБ выпуск 1168, Н.В.Пароль, С.А.Кайдалов, Фоточувствительные приборы и их применение: справочник, М., «Радио и связь», 1991г.

(С) from Александр Кузнецов,

www.diagram.com.ua

Импортные фототранзисторы

Наименование Описание
1 L-610MP4BT/BD NPN черный пластиковый фототранзистор
2 L-32P3C T-1 (3мм) фототранзистор с кристальной линзой
3 L-51P3C T-1 3/4 (5мм) фототранзистор с кристальной линзой

Партнеры

Сайт о ценах на загородную недвижимость: недвио на Сайте портал по продаже загородной.

  • Callbook
  • Мультипоиск
  • DX-календарь
  • QSL-бюро
  • QSL-менеджеры
  • База частот
  • Библиотека
  • Дипломы
  • Закон и право
  • Каталог ссылок
  • Каталог техники
  • Круглые столы
  • Магазины
  • Начинающим
  • Новости
  • Объявления (карта)
  • SDR Трансляции
  • Поиск по сайту
  • Помощь
  • Почтовые рассылки
  • Программы
  • Cи-Би
  • Солнечная активность
  • Соревнования
  • Справочники
  • Статьи
  • Схемы
  • УКВ
  • Форумы
  • eHam.RU NEW!

Нашли опечатку? Ctrl+Enter

Мобильная версия

  • Размещение рекламы
  • Написать редакторам портала
  • Контакты Карта сайта
  • 2000 — 2020 QRZ.RU team

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

Принцип работы фототранзистора

Обычный транзистор состоит из коллектора, эмиттера и базы. В работе фототранзистора, как правило, вывод базы остается отключенным, так как свет генерирует электрический сигнал, позволяющий току протекать через фототранзистор.

При отключенной базе, коллекторный переход фототранзистора смещен в обратном, а эмиттерный переход — в прямом направлении. Фототранзистор остается неактивным до тех пор, пока свет не попадает на базу. Свет активирует фототранзистор, образуя электроны и дырки проводимости — носители заряда, в результате чего через коллектор — эмиттер протекает электрический ток.

Конструкция фототранзистора

Как известно, самым распространенным видом транзистора является биполярный транзистор. Фототранзисторы, как правило, биполярные устройства NPN типа.

Профессиональный цифровой осциллограф

Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

Подробнее

Несмотря на то, что и обычные биполярные транзисторы достаточно чувствительные к свету, фототранзисторы дополнительно оптимизированы для более четкой работы с источником света. Они имеют большую зону базы и коллектора по сравнению с обычными транзисторами. Как правило, они имеют непрозрачный темный корпус с прозрачным окошком для света.

Большинство фототранзисторов производят из полупроводникового монокристалла (кремний, германий), хотя встречаются фототранзисторы, построенные и на основе сложных типов полупроводниковых материалов, например, арсенид галлия.

Оцените статью
( Пока оценок нет )
Добавить комментарий