«Сила тока. Напряжение»
Сила тока
Характеристикой тока в цепи служит величина, называемая силой тока (I). Сила тока – физическая величина, характеризующая скорость прохождения заряда через проводник и равная отношению заряда q, прошедшeгo через пoперeчное сечение проводника за промежуток времени t, к этому промежутку времени: I = q/t. Единица измерения силы тока – 1 ампер (1 А).
Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.
За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2*10-7Н. Эта единица и называется ампером (1 А).
Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1А * 1с.
Амперметр
Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку. Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить, и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.
У клемм амперметра стоят знаки «+» и «—», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному пoлюсу источника тока, а клемма со знаком «—» к отрицательному пoлюсу истoчникa тока.
Напряжение
Источник тока создаёт электрическое поле, которое приводит в движение электрические заряды. Характеристикой источника тока служит величина, называемая напряжением. Чем оно больше, тем сильнее созданное им поле. Напряжение характеризует работу, которую совершает электрическое поле по перемещению электрического заряда.
Напряжение (U) — это физическая величина, равную отношению работы (А) электрического поля по перемещению электрического заряда к заряду (q): U = A/q.
Возможно другое определение понятия напряжения. Если числитель и знаменатель в формуле напряжения умножить на время движения заряда (t), то получим: U = At/qt. В числителе этой дроби стоит мощность тока (Р), а в знаменателе — сила тока (I). Получается формула: U = Р/I, т.е. напряжение — это физическая величина, равная отношению мощности электрического тока к силе тока в цепи.
Единица напряжения: = 1 Дж/1 Кл = 1 В (один вольт).
Вольтметр
Напряжение измеряют вольтметром. Он имеет такое же устройство, что и амперметр и такой же принцип действия, но он подключается параллельно тому участку цепи, напряжение на котором хотят. Внутреннее сопротивление вольтметра достаточно большое, соответственно проходящий через него ток мал по сравнению с током в цепи.
У клемм вольтметра стоят знаки «+» и «—», при включении вольтметра в цепь клeмма со знаком «+» присоединяется к положительному полюсу источника тока, а клеммa со знаком «—» к отрицательному полюсу источника тока.
Формулы и определения.
1. Все проводники, используемые в электрических цепях, имеют условные обозначения для изображения на схемах и могут образовывать последовательные, параллельные и смешанные соединения.
2. Мощность тока – физическая величинa, хаpактеpизующая скорость превращения электрической энергии в другие её виды. Единица для измерения – 1 ватт (1 Вт). Измерительный прибор – ваттметр.
3. Сила тока – физическaя вeличина, характеpизующaя скоpость прохождения заряда через проводник и равная отношению заряда, пpoшедшего через попеpeчное сечение проводника, ко времени перемещения. Единица – 1 ампер (1 А). Измерительный прибор – амперметр (подключают последовательно).
4. Электрическое напряжение – физическaя вeличина, характеризующая электрическое поле, создающее ток, и равная отношению мощности тока к его силе. Единица – 1 вольт (1 В). Измерительный прибор – вольтметр (подключают параллельно)
5. Работа тока – физичeская величинa, хаpактеpизующая количество электроэнергии, превратившейся в другие виды энергии. Единица – 1 джоуль (1 Дж). Измерительный прибор – электрический счётчик, использующий единицу 1 киловатт-час (1 кВт·ч).
Конспект урока «Сила тока. Напряжение».
Следующая тема: «Электрическое сопротивление».
Закон Ома для участка цепи
С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.
Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.
У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».
У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.
Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.
Математически его можно описать вот так:
Закон Ома для участка цепи I = U/R I — сила тока U — напряжение R — сопротивление |
Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.
Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье.
Давайте решим несколько задач на закон Ома для участка цепи.
Задача раз
Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.
Решение:
Возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/880 = 0,25 А
Ответ: сила тока, проходящего через лампочку, равна 0,25 А
Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.
Задача два
Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.
Решение:
Сначала найдем сопротивление проводника.
R = ρ · l/S
Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.
Это значит, что все величины уже даны в СИ и перевод не требуется:
R = 1,05 · 0,5/0,01 = 52,5 Ом
Теперь возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/52,5 ≃ 4,2 А
Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А
А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.
Задача три
Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А
Решение:
Возьмем закон Ома для участка цепи и выразим из него сопротивление:
I = U/R
R = U/I
Подставим значения и найдем сопротивление нити:
R = 220/8,8 = 25 Ом
Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:
R = ρ · l/S
ρ = RS/l
Подставим значения и получим:
ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2/м
Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.
Ответ: нить накаливания сделана из константана.
Типичные напряжения
Вам будет интересно:Где находится Рейкьявик: страна, координаты, описание
Общий поток для батарей фонарика составляет 1,5 V. А совместное напряжение для автомобильных аккумуляторов — 12 вольт.
Общая сила, поставляемая большими энергокомпаниями потребителю, составляет от 110 до 120 вольт и от 220 до 240 вольт. Напряжения в передаче энергии, используемые для распределения всего тока от электростанций, может быть в несколько сотен раз больше, чем любые потребительские напряжения, как правило, от 110 до 1200 кВ (переменного тока).
Сила, которая используется в воздушных линиях для питания всех железнодорожных локомотивов, составляет от 12 кВ до 50 кВ (переменного тока) или от 1,5 кВ до 3 кВ (постоянного тока).
2.2Электрические осветительные установки
Электрические светильники представляют собой однофазную нагрузку, однако благодаря незначительной мощности приемника (обычно не более 2 кВт) в электрической сети при правильной группировке осветительных приборов можно достичь достаточно равномерной нагрузки по фазам (с несимметрией не более 5—10%).
Характер нагрузки равномерный, без толчков, но ее значение изменяется в зависимости от времени суток, года и географического положения. Частота тока общепромышленная, равная 50 Гц. Коэффициент мощности для ламп накаливания равен 1, для газоразрядных ламп 0,6. Следует иметь в виду, что в проводах, особенно нулевых, при применении газоразрядных ламп появляются высшие гармоники тока.
Кратковременные (несколько секунд) аварийные перерывы в питании осветительных установок допустимы. Продолжительные перерывы (минуты и часы) в питании для некоторых видов производства недопустимы. В таких случаях применяется резервирование питания от второго источника тока (в некоторых случаях даже от независимого источника постоянного тока). В тех производствах, где отключение освещения угрожает безопасности людей, применяются специальные системы аварийного освещения. Для осветительных установок промышленных предприятий применяются напряжения от 6 до 220 В.
Характерные значения и стандарты[ | ]
Объект | Тип напряжения | Значение (на вводе потребителя) | Значение (на выходе источника) |
Электрокардиограмма | Импульсное | 1—2 мВ | — |
Телевизионная антенна | Переменное высокочастотное | 1—100 мВ | — |
Гальванический цинковый элемент типа АА («пальчиковый») | Постоянное | 1,5 В | — |
Литиевый гальванический элемент | Постоянное | 3—3,5 В (в исполнении пальчикового элемента, на примере Varta Professional Lithium, AA) | — |
Логические сигналы компьютерных компонентов | Импульсное | 3,3 В; 5 В | — |
Батарейка типа 6F22 («Крона») | Постоянное | 9 В | — |
Силовое питание компьютерных компонентов | Постоянное | 5 В, 12 В | — |
Электрооборудование автомобилей | Постоянное | 12/24 В | — |
Блок питания ноутбука и жидкокристаллических мониторов | Постоянное | 19 В | — |
Сеть «безопасного» пониженного напряжения для работы в опасных условиях | Переменное | 36—42 В | — |
Напряжение наиболее стабильного горения свечи Яблочкова | Постоянное | 55 В | — |
Напряжение в телефонной линии (при опущенной трубке) | Постоянное | 60 В | — |
Напряжение в электросети Японии | Переменное трёхфазное | 100/172 В | — |
Напряжение в домашних электросетях США | Переменное трёхфазное | 120 В / 240 В (сплит-фаза) | — |
Напряжение в бытовых электросетях России | Переменное трёхфазное | 220/380 В | 230/400 В |
Разряд электрического ската | Постоянное | до 200—250 В | — |
Контактная сеть трамвая и троллейбуса | Постоянное | 550 В | 600 В |
Разряд электрического угря | Постоянное | до 650 В | — |
Контактная сеть метрополитена | Постоянное | 750 В | 825 В |
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) | Постоянное | 3 кВ | 3,3 кВ |
Распределительная воздушная линия электропередачи небольшой мощности | Переменное трёхфазное | 6—20 кВ | 6,6—22 кВ |
Генераторы электростанций, мощные электродвигатели | Переменное трёхфазное | 10—35 кВ | — |
На аноде кинескопа | Постоянное | 7—30 кВ | — |
Статическое электричество | Постоянное | 1—100 кВ | — |
На свече зажигания автомобиля | Импульсное | 10—25 кВ | — |
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) | Переменное | 25 кВ | 27,5 кВ |
Пробой воздуха на расстоянии 1 см | 10—20 кВ | — | |
Катушка Румкорфа | Импульсное | до 50 кВ | — |
Пробой слоя трансформаторного масла толщиной 1 см | 100—200 кВ | — | |
Воздушная линия электропередачи большой мощности | Переменное трёхфазное | 35 кВ, 110 кВ, 220 кВ, 330 кВ | 38 кВ, 120 кВ, 240 кВ, 360 кВ |
Электрофорная машина | Постоянное | 50—500 кВ | — |
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) | Переменное трёхфазное | 500 кВ, 750 кВ, 1150 кВ | 545 кВ, 800 кВ, 1250 кВ |
Трансформатор Тесла | Импульсное высокочастотное | до нескольких МВ | — |
Генератор Ван де Граафа | Постоянное | до 7 МВ | — |
Грозовое облако | Постоянное | От 2 до 10 ГВ | — |
Основные события в истории изучения электрических процессов
Впервые проявление электрических процессов описал древнегреческий философ Фалес в VII веке до нашей эры, потирая янтарь о шерстяную накидку. Он заметил, что после этого различные мелкие частицы, пыль, волоски шерсти и другие предметы притягиваются к кусочку янтаря. Позже, в 1600 году это явление более подробно описал англичанин Уильям Гилберт, в его работе впервые использован терминэлектричество» при описании магнитных свойств различных материалов. Он первым начал рассматривать всю планету как большой магнит, в последующие 200 лет ученые проводили множество практических опытов, пытались описать напряженность формы электрического поля и другие параметры математическим способом. Джозеф Томсон, английский ученый, в 1897 году математически рассчитал существование элементарной заряженной частицы, которую назвали электрон (в переводе с греческого языка — «янтарь»). В математическом измерении принято считать, что она имеет отрицательный заряд 1,602х10-19 Кл (Кулон) с расчетной массой 9,109х10-31 кг. Именно благодаря наличию электронов в материи различных веществ и другим частицам осуществляются электрические процессы.
Единицы измерения в формуле
Вам будет интересно:Антиклиналь + синклиналь – это складчатые горы
В формуле, определяющей напряжение, значением СИ является вольт. Таким образом, что 1В = 1 джоуль/кулон. Вольт назван в честь итальянского физика Алессандро Вольта, который изобрел химическую батарею.
Это означает, что в формуле напряжения в физике один кулон заряда получит один джоуль потенциальной энергии, когда он будет перемещен между двумя точками, где разность электрических потенциалов составляет один вольт. При напряжении 12, один кулон заряда получит 12 джоулей потенциальной энергии.
Батарея на шесть вольт имеет потенциал для одного кулона заряда, чтобы получить шесть джоулей потенциальной энергии между двумя местоположениями. Батарея на девять вольт имеет потенциал для одного кулона заряда, чтобы получить девять джоулей потенциальной энергии.
Определение действующего напряжения
Теперь непосредственно о том, почему произошел переход от максимального, амплитудного значения напряжения 310 Вольт к действующему 220 Вольт. Ответ можно найти в самом определении.
Действующее (эффективное или среднеквадратичное) значение напряжения — это такое напряжение постоянного тока, которое на такой же резистивной нагрузке выделит такую же мощность, как измеряемое переменное напряжение. Соответственно, действующее значение силы тока — такое значение силы постоянного тока, при прохождении которого через резистивную нагрузку выделится такая же мощность, что и при прохождении измеряемого тока.
Можно сформулировать и немного иначе. Действующее значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведет такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.
Общая формула расчета действующего напряжения произвольной формы следующая:
Напряжение в цепях постоянного тока
Ротор – что это
В таких схемах значение описываемой характеристики длительное время остается постоянным. Постепенное изменение значения этой характеристики при подключении потребителей (нагрузки) к аккумулятору связано с его разрядкой – уменьшением разности потенциалов между выводами источника питания за счет движения большего количества носителей заряда от аккумуляторной батареи клемма положительная к отрицательной клемме.
Ток и напряжение в этом случае связаны законом Ома, формула которого приведена ниже:
I = U / R,
где это находится:
- I – сила тока, А;
- U – разность потенциалов, В;
- R – сопротивление, Ом.
Треугольник Ома – удобная форма одноименной формулы закона.
Физическая работа пробного заряда в электрическом поле
Итак, вы превратились в пробный электрический зарядq во много раз меньший чем зарядQ на обкладках конденсатора и начали свое путешествие между обкладок конденсатора. При этом вы будете испытывать действие кулоновых сил. Допустим, что вы являетесь отрицательно заряженной частицей подобно электрону, тогда вас будет притягивать в сторону обкладки+Q , и вас будет отталкивать от обкладки с зарядом-Q . Чем ближе вы будете к одной из обкладок, тем сильнее вы будете испытывать ее силовое действие.
Предположим, что вы вошли в конденсатор со стороны обкладки -Q
и вас тут же начало отталкивать от нее в сторону обкладки+Q . Вы не стали сопротивляться такому воздействию и решили не противится природе и двигаться в полном согласии с влечением. Для этих целей как раз удобно расположены балки и лестницы, по которым вы можете свободно добраться до обкладки+Q любым маршрутом. Так как на вас действуют электрическая кулоновская сила, то вы начинаете свободно набирать скорость, словно вас несет ветром. В итоге вы преодолели расстояние по балке от одной лестницы до другой в направлении от точкиA к точкеB (смотрите рисунок выше ). Лестницы — это эквипотенциальные линии, и соответственно, вы преодолели расстояние от одного значения потенциала к другому. В нашем случае вы двигались от того потенциала, который для вас больший по величине, к тому, что меньше. Если же вы были бы зарядом другого знака, то есть+q , тогда потенциалы поменяли бы свои знаки и больший стал бы меньшим, а меньший большим. Математически это означает умножение потенциалов на-1 .
На вас действовала сила и вы переместились из точки A
в точкуB , другими словами вы двигались отпотенциалаφa (большего) кпотенциалуφb (меньшему). Это подобно тому, как если бы вы плыли по течению реки на плоту, когда вам не нужно грести веслами и не требуется мотора для движения. Можно сказать, что вами совершена механическая работа, которая является вычисляется как произведение силы на расстояние. Совершив такое перемещение, вы потеряли часть потенциальной энергии, которая перешла в кинетическую (скорость вашего движения), а затем выделилась вероятно в виде тепла при торможении. Проделав обратный путь из точкиB в точкуA , вы будете двигаться как бы против течения, вам придется затратить энергию, грести веслами, использовать мотор и т. п. Переместившись обратно вы увеличите свою потенциальную энергию, потому как переместитесь в точку с большим потенциалом и ваше энергетическое состояние увеличится.
Советуем изучить Тиристорный преобразователь
Разность этих двух потенциалов φa
иφb и будет являться электрическим напряжением. Это равнозначные понятия, но в практической электротехнике чаще всего употребляют выражение не разность потенциалов, а напряжение. При рассмотрении электрических цепей употребляют такое выражение как падение напряжения на участке цепи, а для источников электричество та же самая разность потенциалов определяется как электродвижущая сила (ЭДС).
Разность потенциалов Δφ=φ1-φ2
всегда показывает какую работуA может совершить носитель зарядаq при перемещении этого заряда из точки с одним потенциаломφ1 в точку с другим потенциаломφ2 . При вычислении надо иметь в виду, что потенциалы могут быть как со знакомплюс , так и со знакомминус .
Если заряду для такого перемещения требуется затратить энергию, а значит увеличить свой потенциал, то тогда работа А
будет со знаком (-), а если носитель заряда перемещается из области высокого потенциала в область с низким потенциалом, тогда происходит выделение энергии и работаА будет со знаком (+). Таким образом электрическое напряжение — этоэнергетическая характеристика электрического поля и представляет собой разность потенциаловΔφ . Это значит, что принципиально неверно утверждать, что напряжение — это потенциал. Электрическое напряжение — это всегда разность потенциалов и она возможна только между двумя точками электрического поля. Если имеется одна точка в пространстве электрического поля, тогда уместно говорить только о потенциале этой точки, но никак ни о ее напряжении.
E
, потенциалφ , и, конечно, разность потенциалов — электрическое напряжение. Поняв эти различия, будет совершенно легко разобраться с тем, что такое электрический ток.
Измерение тока
В отличие от напряжения, которое измеряется в двух точках, ток измеряется в одной точке. Поскольку сила течения (или, проще говоря, течения), по нашей аналогии, является скоростью потока воды, то эту скорость нужно измерять только в одной точке.
Нам нужно перекрыть подачу воды и поставить на место некий счетчик, который будет считать литры и минуты. Что-то вроде этого.
Точно так же, если мы вернемся в реальный мир нашей электрической модели, мы получим то же самое. Чтобы измерить величину электрического тока, нам нужно подключить простой прибор – амперметр – к разрыву электрической цепи. В мультиметр также входит амперметр. Вы также можете прочитать в моей статье.
Щупы мультиметра необходимо перевести в текущий режим измерения. Затем кусаем наш проводник и подключаем отрезки провода к мультиметру и вуаля – текущее значение отобразится на экране мультиметра.
Как измерить силу тока
Эту характеристику можно измерить с помощью амперметра. Прибор последовательно подключается к электрической сети (плюс к плюсу, минус к минусу). Чем ниже сопротивление амперметра, тем меньше его влияние на измерения, и тем они точнее. Если сопротивление амперметра стремится к нулю, он нейтрален и не влияет на показатели сети.
Работа амперметра основана на магнитном действии тока. Чем больше сила тока, проходящего по катушки, тем сильнее она взаимодействует с магнитом и тем больше угол поворота стрелки амперметра.
При измерении силы тока амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить.
У каждой клеммы прибора стоит свой знак: “+” или “-“.
Клемму со знаком “+” нужно соединить с проводом, идущим от положительного полюса источника тока, а клемму со знаком “-” – с проводом, идущим от отрицательного полюса источника тока.
На электрических схемах амперметр изображают в виде кружка с буквой А.
Виды амперметров
По конструкции амперметры бывают:
- аналоговые (со стрелочной измерительной головкой);
- цифровые (с индикатором).
Амперметр – прибор для измерения силы тока в амперах.
По способу измерения:
- Магнитоэлектрические, в которых отклонение чувствительной стрелки и показатели зависят от силы взаимодействия полей постоянного магнита и поля электрического тока в алюминиевой рамке, и угла поворота последней.
- Электромагнитные, показатели которых меняются с подвижками железного сердечника под влиянием электромагнитного поля катушки.
- Электродинамические, в которых отклонение стрелки связано с притяжением или отклонением подвижной катушки относительно неподвижной, соединенных последовательно или параллельно.
- Тепловые, в которых при нагреве электрическим током происходит изменение длины металлической нити и положения связанной с нитью измерительной стрелки.
- Индукционные, в которых связанный со стрелкой металлический диск отклоняется под воздействием электромагнитного поля неподвижных катушек.
- Детекторные, в которых магнитоэлектрический прибор соединен с выпрямителем-детектором.
- Термоэлектрические, которые состоят из нагревателя и магнитоэлектрического измерительного механизма.
- Фотоэлектрические, в которых фотоэлектрический элемент преобразует световой поток в электрический.
Магнитоэлектрические приборы определяют только силу постоянного тока, индукционные и детекторные – переменного. Фотоэлектрические высокоточные приборы работают с постоянным током и током низкой и высокой частоты.
Остальные из перечисленных подходят для разных токов.
Приборы бывают многофункциональными, т.е. действующими в разных режимах. Например, мультиметр работает и как вольтметр, и как омметр, и как мегомметр (для высоких сопротивлений).
В всех современных измерительных приборах есть переключатель диапазона чувствительности.
Правила измерения
- Амперметр включается в электросеть последовательно, «в разрыв цепи».
- При включении прибора в сеть, необходимо соблюдать полярность, присоединяя «+» прибора к «+» источника тока, а «-» к «-».
- Тестируемая линия при подключении должна быть обесточена. Иначе прикасание щупами прибора к проводам или контактам может вызвать короткое замыкание.
- При высоких напряжениях в цепь переменного тока помимо амперметра включается трансформатор или шунт, в цепь постоянного – магнитный усилитель или шунт.
- Тип амперметра для измерений выбирают в соответствии с типом электрического прибора или линии. Также учитывают требуемую точность показателей.
Перед подключением необходимо подробно изучить инструкцию к амперметру.
4+
Разновидности
Бывает двух видов: постоянным и переменным. Первое есть в электростатических видах цепей и тех, которые имеют постоянный ток. Переменный встречается там, где есть синусоидальная энергия
Важно, что синусоидальная энергия делится на действующее, мгновенное со средневыпрямленным. Единица измерения напряжения электрического тока вольт
Стоит также отметить, что величина энергии между фазами называется линейной фазой, а показатель тока земли и фаз — фазным. Подобное правило используется во всех воздушных линиях. На территории Российской Федерации в электрической бытовой сети стандартное — 380 вольт, а фазное — 220 вольт.
Основные разновидности
Постоянное напряжение
Постоянным называется разность между электрическими потенциалами, при которой остается такой же величина с перепадами полярности на протяжении конкретного периода. Главным преимуществом постоянной энергии является тот факт, что отсутствует реактивная мощность. Это означает, что вся мощность, которая вырабатывается при помощи генератора, потребляется нагрузкой за исключением проводных потерь. Течет по всему проводниковому сечению.
Что касается недостатков, есть сложность повышения со снижением энергии, то есть в моменте преобразования ее из-за конструкции преобразователей и отсутствия мощных полупроводниковых ключей. К тому же сложно развязывается высокая и низкая энергия.
Обратите внимание! Используется постоянная энергия в электронных схемах, гальванических элементах, аккумуляторах, электролизных установках, сварочных инструментах, инверторных преобразователях и многих других приборах. Вам это будет интересно Почему выбило автомат: исправляем неполадки
Вам это будет интересно Почему выбило автомат: исправляем неполадки
Постоянный ток
Переменное напряжение
Переменным называется ток, изменяющийся по величине и направлению периодически, но при этом сохраняющий свое направление в электроцепи неизменно. Нередко его называют синусоидальным. Одно направление, в котором движется энергия, называется положительным, а другое — отрицательным. Поэтому получающаяся величина называется положительной и отрицательной. Такой показатель является алгебраической величиной. В ответ на вопрос, как называется единица измерения напряжения, необходимо отметить, что это вольт. Значение его определяется по направлению. Максимальное значение — амплитуда. Бывает он:
двухфазным;
Двухфазный
трехфазным;
Трехфазный
многофазным.
Многофазный Используется активно в промышленности, на электрической станции, на трансформаторной подстанции и передается в каждый дом при помощи линий электрических передач. Больше всего используется три фазы для подключения. Подобная электрификация распространена на многих железных дорогах.
Обратите внимание! Стоит отметить, что имеются также некоторые виды двухсистемных электровозов, которые работают во многих случаях на переменном показателе. Переменный ток
Переменный ток
Как работают источники напряжения?
Любой источник напряжения, включая аккумуляторы, имеет две точки для электрического контакта. В этом случае на рисунке выше у нас есть точка 1 и точка 2. Горизонтальные линии разной длины указывают на то, что это батарея, и дополнительно указывают направление, в котором напряжение этой батареи будет пытаться протолкнуть носители заряда по цепи. Тот факт, что горизонтальные линии в символе батареи кажутся разделенными (и, таким образом, не могут служить путем для потока заряда), не причина для беспокойства: в реальной жизни эти горизонтальные линии представляют собой металлические пластины, погруженные в жидкий или полутвердый материал, который не только проводит заряды, но и генерирует напряжение, которое толкает их, взаимодействуя с пластинами
Обратите внимание на маленькие значки «+» и «-» непосредственно слева от символа батареи. Отрицательный (-) конец батареи всегда является концом с самой короткой линией, а положительный (+) конец батареи всегда является концом с самой длинной линией
Положительный конец батареи – это конец, который пытается вытолкнуть из нее носители заряда (помните, что по соглашению мы думаем, что носители заряда положительно заряжены, даже если электроны заряжены отрицательно). Точно так же отрицательный конец – это конец, который пытается притянуть носители заряда. Когда «+» и «-» концы батареи ни к чему не подключены, между этими двумя точками будет напряжение, но потока зарядов через батарею не будет, потому что нет непрерывного пути, по которому могут перемещаться носители заряда.
Рисунок 8 – Аналогия резервуаров с водой
Тот же принцип справедлив и для аналогии с резервуаром для воды и насосом: без обратной трубы, по которой вода могла бы сливаться обратно в пруд, накопленная энергия в резервуаре не может быть выпущена в виде потока воды. Как только резервуар будет полностью заполнен, поток не может возникнуть, независимо от того, какое давление может создать насос. Для обеспечения непрерывного потока должен существовать полный путь (контур), по которому вода течет из пруда в резервуар и обратно в пруд. Мы можем обеспечить такой путь для батареи, соединив кусок провода от одного конца батареи к другому. Формируя цепь с петлей из проволоки, мы инициируем непрерывный поток зарядов по часовой стрелке:
Рисунок 9 – Электрическая цепь и аналогия с резервуарами
Приемники, источники:
Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора , напряжение блока питания будет стабилизировано. На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод. Этого можно достичь, перенося свободные электроны с положительного тела на отрицательное так, чтобы заряды тел не менялись со временем.
Режимы работы Различные элементы, соединенные проводниками электрического тока между собой, образуют электрические цепи.
Направленное движение электронов в проводнике Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. Дополнительно по теме.
Режим короткого замыкания В этом режиме ключ SA в схеме электрической цепи рис.
Транзисторы — это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Динисторы — разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения.
Это участок цепи с током одинаковой величины. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления. Метод эквивалентных преобразований. Как находить токи и напряжения в цепи
Читайте дополнительно: Измерение петли фаза нуль