Применение медных проводников
Медь является не только хорошим проводником электрического тока, но и очень пластичным материалом. Благодаря этому свойству медная проводка лучше укладывается, она устойчива к изгибам и растяжению.
Медь очень востребована на рынке. Из этого материала производят множество различных изделий:
- Огромное многообразие проводников;
- Автозапчасти (например, радиаторы);
- Часовые механизмы;
- Компьютерные составляющие;
- Детали электрических и электронных приборов.
Удельное электрическое сопротивление меди является одним из лучших среди проводящих ток материалов, поэтому на ее основе создается множество товаров электроиндустрии. К тому же медь легко поддается пайке, поэтому очень распространена в радиолюбительстве.
Высокая теплопроводность меди позволяет использовать ее в охлаждающих и обогревающих устройствах, а пластичность дает возможность создавать мельчайшие детали и тончайшие проводники.
Дистиллированная вода
Если воду очистить от всех примесей, то она перестанет пропускать ток. Такая вода называется дистиллированной. Ее получают в процессе перегонки в аппаратах, называемых дистилляторами, методом обратного осмоса и некоторыми другими способами. Многие пытливые умы интересует, проводит ли ток беспримесная дистиллированная вода?
Из-за присутствия углекислого газа такая жидкость имеет слабую кислотность, но это на электропроводность не влияет. Чтобы избавиться от углекислого газа, дистиллированную воду кипятят 30 минут, затем герметично закрывают.
Итак, отвечая на вопрос, какая вода не может проводить электрический ток, следует отвечать – дистиллированная, высокоочищенная.
Влияние температуры и давления на удельное сопротивление минералов и горных пород
С ростом температуры на 40°С сопротивление уменьшается примерно в 2 раза, что объясняется увеличением подвижности ионов. При замерзании сопротивление горных пород возрастает скачком, так как свободная вода становится практически изолятором, а электропроводность определяется лишь связанной водой, которая замерзает при очень низких температурах (ниже -50° С).
Возрастание сопротивлений при замерзании разных пород различно: в несколько раз оно увеличивается у глин, до 10 раз — у скальных пород, до 100 раз — у суглинков и супесей и до 1000 и более раз — у песков и грубообломочных пород.
Глубина залегания, степень метаморфизма, структура и текстура породы также влияют на ее сопротивление, изменяя коэффициент микроанизотропии, за который принято брать:
где ρn и ρl— сопротивления породы вкрест и вдоль слоистости. Чаще всего λ меняется от 1 до 1,5, достигая 2-3 у сильно рассланцованных пород. Величина λ может достигать нескольких единиц для мерзлых пород разной криогенной структуры и льдовыделения.
Электропроводность и носители тока[ | ]
Электропроводность всех веществ связана с наличием в них носителей тока (носителей заряда) — подвижных заряженных частиц (электронов, ионов) или квазичастиц (например, дырок в полупроводнике), способных перемещаться в данном веществе на большое расстояние, упрощенно можно сказать, что имеется в виду что такая частица или квазичастица должна быть способна пройти в данном веществе сколь угодно большое, по крайней мере макроскопическое, расстояние, хотя в некоторых частных случаях носители могут меняться, рождаясь и уничтожаясь (вообще говоря, иногда, возможно, и через очень небольшое расстояние), и переносить ток, сменяя друг друга.
Поскольку плотность тока определяется для одного типа носителей формулой:
j → = q n v → c p . , {\displaystyle {\vec {j}}=qn{\vec {v}}_{cp.},} где q {\displaystyle q} — заряд одного носителя, n {\displaystyle n} — концентрация носителей, v → c p . {\displaystyle {\vec {v}}_{cp.}} — средняя скорость их движения,
или j → = ∑ i q i n i v → i c p . {\displaystyle {\vec {j}}=\sum _{i}q_{i}n_{i}{\vec {v}}_{icp.}} для более чем одного вида носителей, нумеруемых индексом i , {\displaystyle i,} принимающим значение от 1 до количества типов носителей, у каждого из которых может быть свой заряд (возможно отличающийся величиной и знаком), своя концентрация, своя средняя скорость движения (суммирование в этой формуле подразумевается по всем имеющимся типам носителей), то, учитывая, что (установившаяся) средняя скорость каждого типа частиц при движении в конкретном веществе (среде) пропорциональна приложенному электрическому полю (в том случае, когда движение вызвано именно этим полем, что мы здесь и рассматриваем):
v → c p . = μ E → , {\displaystyle {\vec {v}}_{cp.}=\mu {\vec {E}},} где μ {\displaystyle \mu } — коэффициент пропорциональности, называемый подвижностью и зависящий от вида носителя тока в данной конкретной среде.
Отсюда следует, что для электропроводности справедливо выражение:
σ = q n μ , {\displaystyle \sigma =qn\mu ,}
или:
σ = ∑ i q i n i μ i {\displaystyle \sigma =\sum _{i}q_{i}n_{i}\mu _{i}} — для более чем одного вида носителей.
Свойства электрической воды
Известно, что анолит имеет антибактериальное, противовирусное, антимикозное, антиаллергическое, противовоспалительное, противоотечное, противозудное и подсушивающее действие. Он характеризуется также цитотоксическим и антиметаболическим действием, не оказывая вредного воздействия на клетки тканей человека.
Католиту же присущи свойства антиоксиданта и иммуностимулятора. Он может использоваться для детоксикации организма, нормализации метаболических процессов, стимулирования регенерации тканей, для улучшения трофических процессов и кровообращения в тканях.
Такие свойства электроактивированных растворов делают их затребованными в медицине. С помощью анолитов осуществляют дезинфекцию и стерилизацию. Такой дезинфекции подвергают инструменты, помещения, аппаратуру, кожу, слизистые.
Католиты хорошо зарекомендовали себя при лечении гастритов, геморроя, дерматомикоза, экземы, аденомы предстательной железы и хронического простатита, тонзиллита, бронхита, хронического пиелонефрита, хронического гепатита, вирусного гепатита, деформирующего артроза и т.д.
Фармакологические свойства таких растворов продолжают изучать. Исследования в этом направлении активно ведутся в Воронежской медицинской академии.
Поле в диэлектрике
Как мы уже поняли, поле в диэлектрике направлено ровно против внешнего электрического поля. Но этих знаний нам не хватит, чтобы хорошо разбираться в диэлектриках.
Поэтому давайте немного углубимся в эту тему. Напомним, что поляризация диэлектрика — это когда заряды перенаправляются так, что минусы смотря в одну сторону, а плюсы — в другую. Так вот, давайте же разберемся в видах поляризации.
Деформационная (или же электронная)
Этот вид поляризации интересует нас больше всего. Стоит отметить, что такая поляризация характерна для веществ, состоящих из неполярных молекул, то есть у которых нет дипольных моментов. Что происходит? Все просто — главное, что нужно понять, это то, что смещаются электронные оболочки. При этом, положительно заряженные атомные ядра смещаются по направлению к внешнему полю, а отрицательно заряженные электронные оболочки — против поля.
Дипольная (или же ориентационная)
Это один из наиболее распространенных видов поляризации. Однако здесь все с точностью до наоборот. Здесь уже меняют ориентацию диполи. Здесь все еще просто — когда поле снаружи не воздействует на вещество, порядок у диполей абсолютно хаотичен, но когда внешнее поле начинает воздействовать на вещество, то абсолютно все диполи разворачиваются положительной стороной к полю, которое на него воздействует. Как мы уже разбирались выше, стабильность положения диполей определяется напряженностью поля и температурой вещества.
Ионная
Да, этот вид поляризации мы тоже не забыли. Здесь речь идет о смещении положительной решетки ионов. Они расположатся вдоль поля, а отрицательные — против.
Так почему же в самом начале мы сказали, что нас больше всего будет интересовать именно первый вид поляризации, если мы будет рассматривать положительные заряды? Все просто. Положительные заряды играют какую-то роль только при таком воздействии внешнего поля на вещество. Поэтому можете считать, что вы уже знаете о них все, что нужно.
TDS и электропроводность — Lenntech
Термин TDS описывает все твердые вещества (обычно минеральные соли), которые растворяются в воде. TDS и электропроводность находятся в тесной связи. Чем больше солей растворено в воде, тем выше значение электропроводности. Большинство твердых веществ, которые остаются в воде после песочного фильтра, представляют собой растворенные ионы. Например, хлорид натрия содержится в воде в виде Na + и Cl-. Вода высокой чистоты, которая в идеальном случае содержит только воду без солей и минералов, обладает очень низкой электропроводностью.Температура воды влияет на электрическую проводимость, поэтому ее значение увеличивается от 2 до 3% на 1 градус Цельсия.
Преобразование электрической проводимости в TDS
Если ваш анализ воды показывает TDS и электрическую проводимость, тогда должно быть возможно установить следующее соотношение.
+ 500 ppm соответствуют 1000 мкСм / см или 1 EC
. Это можно легко измерить с помощью измерителя TDS. Измерители NPK, которые измеряют концентрацию нитратов, фосфатов и калия, часто используются в садоводстве.При использовании измерителя NPK соотношение между TDS и электричеством изменяется до указанного ниже значения.
+ 700 ppm соответствуют 1000 мкСм / см или 1 EC
Определение EC может быть выполнено различными способами. Одной из возможностей является использование коэффициента удельной ионной проводимости. Этот коэффициент указан в диаграммах, хотя для их использования необходимо провести точный анализ воды, поскольку каждый отдельный ион влияет на проводимость. Пример такой диаграммы можно найти в «Справочнике по химии и физике», 76-е издание, с.5-90“ .
Из-за того, что измерение электропроводности зависит от температуры воды, ее трудно определить с помощью интернет-приложения.
Для преобразования различных единиц измерения проводимости вы можете использовать наш преобразователь проводимости.
|
||||||
Как использовать преобразователь теплопроводности Выберите единицу измерения для преобразования из в список единиц ввода.Выберите единицу для преобразования в в списке выходных единиц. Введите значение для преобразования из в поле ввода слева. Результат конвертации сразу появится в поле вывода. Bookmark Преобразователь теплопроводности — он вам, вероятно, понадобится в будущем. |
||||||
Download Преобразователь единиц теплопроводности наша мощная программная утилита, которая поможет вам легко конвертировать более 2100 различных единиц измерения в более чем 70 категорий.Откройте для себя универсальный помощник для всех ваших потребностей преобразования единиц — скачайте бесплатную демо-версию прямо сейчас! Произведите 78 764 конверсий с помощью простого в использовании, точного и мощного калькулятора единиц измерения | ||||||
Мгновенно добавьте бесплатный виджет конвертер теплопроводности на свой сайт Это займет не более минуты, так же просто, как вырезание и вставка.Конвертер легко вписывается в ваш веб-сайт, так как он полностью переименован. Нажмите здесь для пошагового руководства, как разместить этот конвертер единиц на вашем сайте | ||||||
|
Электрические диэлектрики. Какие они?
Как нас учили в школе, некоторые вещества плохо проводят электрический ток, а некоторые хорошо. Например, дерево очень плохо проводит, а вот алюминий проводит в разы лучше. Так вот, если вспомнить терминологию, то вещества, проводящие электричество хорошо, называются проводниками, а те, что его проводят плохо, называются… Ну как же их? Ах да, они называются электрическими диэлектриками.
Конечно мы не говорим о том, что они совсем ток не проводят, нет. Они, конечно же являются проводниками, просто сравнительно довольно плохими. Диэлектрики с другой стороны еще и вещества, которые могут довольно долго хранить в себе электрическое поле, причем на это не нужна будет внешняя энергия.
Почему вода проводит электричество
В жидких веществах причиной появления электричества являются ионы. Когда они начинают под действием электрического поля упорядоченно двигаться, возникает ток. Абсолютно чистая вода – это нейтральная молекула, диэлектрик, и ток она не проводит.
Иногда, очень редко, молекулы воды тоже распадаются на ионы, поэтому проводимость нельзя считать равной абсолютному нулю. Но она настолько мала при нормальных условиях, что ею пренебрегают.
Если добавить в воду соль какого-либо металла, то образуются ионы и жидкость станет проводником. Чем больше солей растворится, тем большей проводимостью станет обладать вода.
Происходит это потому, что молекула воды полярная. Она притягивается к молекуле соли и разрывает ее на части. Так образуются ионы.
Поскольку в природе и в водопроводной трубе вода всегда с примесями, то электричество она проводит.
Поверхность нашего тела тоже всегда влажная и немного соленая. Следовательно, тело тоже проводит электричество. Еще лучше, чем кожа, проводит электричество кровь, желудочный сок, мышцы, моча
По этой причине человек очень подвержен влиянию электричества и должен осторожно с ним обращаться
Электропроводность — вещество
Электропроводность веществ первых 6 групп о зависит от темп-ры Т и подсчитывается но ф-ле а О ( ехр ( — — Е / кТ), где а0 — темповая электропроводность; В — энергия активации проводимости; к — постоянная Больцмана; Еф — порог, при к-ром впервые наблюдается фотопроводимость.
Электропроводность веществ обусловлена движением электронов.
Электропроводность вещества зависит от концентрации носителей тока и их подвижности.
Электропроводность вещества связана с присутствием заряженных частиц ( электронов, ионов), способных перемещаться под действием электрического поля.
Электропроводность вещества определяется как свойство проводить неизменяющийся во времени электрический ток под действием неизменяющегося во времени электрического поля. Это свойство вещества является одним из основных свойств, которые использует электротехника. Рассмотрим вначале кратко физико-химические основы электропроводности.
Электропроводность вещества определяется количеством ионов, которые пересекут площадь поперечного сечения проводника в единицу времени. Это количество зависит от ряда факторов, важнейшими из которых являются следующие.
Схема электрической проводимости раствора электролита. |
Электропроводность вещества определяется количеством ионов, которые пересекут площадь поперечного сечения проводника в единицу времени. Это количество зависит от разных условий, важнейшими из которых являются следующие.
Структура энергетических зон металла ( а, полупроводника ( б и диэлектрика ( в. |
Электропроводность веществ различных классов изменяется по-разному в зависимости от окружающей температуры. У полупроводников электропроводность с повышением температуры увеличивается, а у проводников ( металлов) — уменьшается.
Если электропроводность веществ не столь велика, чтобы не обнаруживать поляризационные эффекты, то их называют несовершенными диэлектриками или несовершенными изолирующими средами.
Характер электропроводности вещества зависит от природы свободных зарядов.
Характер электропроводности вещества зависит от природы свободных зарядов.
Приборы для изучения электропроводности ( из стеклянной. |
Для демонстрации электропроводности веществ различной концентрации ( рис. 3 — 20, б) в две трубки наливают концентрированную уксусную кислоту. В одну трубку подливают при размешивании воду. Лампочка, соединенная с этой трубкой, загорается.
ВАХ-характеристики
Вольт амперная характеристика полупроводникового диода зависит от материала, из которого он изготовлен и некоторых параметров. Например, идеальный полупроводниковый выпрямитель или диод имеет следующие параметры:
- Сопротивление при прямом подключении – 0 Ом;
- Тепловой потенциал – VG = +-0,1 В.;
- На прямом участке RD > rD, т. е. прямое сопротивление больше, чем дифференциальное.
Если все параметры соответствуют, то получается такой график:
Фото — ВАХ идеального диода
Такой диод использует цифровая электротехника, лазерная индустрия, также его применяют при разработке медицинского оборудования. Он необходим при высоких требованиях к логическим функциям. Примеры – лазерный диод, фотодиод.
На практике, эти параметры очень отличаются от реальных. Многие приборы просто не способны работать с такой высокой точностью, либо такие требования не нужны. Эквивалентная схема характеристики реального полупроводника демонстрирует, что у него есть серьезные недостатки:
Фото — ВАХ в реальном полупроводниковом диоде
Данная ВАХ полупроводникового диода говорит о том, что во время прямого включения, контакты должны достигнуть максимального напряжения. Тогда полупроводник откроется для пропуска электронных заряженных частиц. Эти свойства также демонстрируют, что ток будет протекать нормально и без перебоев. Но до момента достижения соответствия всех параметров, диод не проводит ток. При этом у кремниевого выпрямителя вольтаж варьируется в пределах 0,7, а у германиевого – 0,3 Вольт.
Работа прибора очень зависит от уровня максимального прямого тока, который может пройти через диод. На схеме он определяется ID_MAX. Прибора так устроен, что во время включения прямым путем, он может выдержать только электрический ток ограниченной силы. В противном случае, выпрямитель перегреется и перегорит, как самый обычный светодиод. Для контроля температуры используются разные виды устройств. Естественно, некоторые из них влияют на проводимость, но зато продлевают работоспособность диода.
Еще одним недостатком является то, что при пропуске переменного тока, диод не является идеальным изолирующим устройством. Он работает только в одном направлении, но всегда нужно учитывать ток утечки. Его формула зависит от остальных параметров используемого диода. Чаще всего схемы его обозначают, как IOP. Исследование независимых экспертов установило, что германиевые пропускают до 200 µА, а кремниевые до 30 µА. При этом многие импортные модели ограничиваются утечкой в 0.5 µА.
Фото — отечественные диоды
Все разновидности диодов поддаются напряжению пробой. Это свойство сети, которое характеризуется ограниченным напряжением. Любой стабилизирующий прибор должен его выдерживать (стабилитрон, транзистор, тиристор, диодный мост и конденсатор). Когда внешняя разница потенциалов контактов выпрямительного полупроводникового диода значительно выше ограниченного напряжения, то диод становится проводником, в одну секунду снижая сопротивление до минимума. Назначение устройства не позволяет ему делать такие резкие скачки, иначе это исказить ВАХ.
Удельное электрическое сопротивление
Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением
и обозначается греческой буквойρ (ро).
В таблице 1 даны удельные сопротивления некоторых проводников.
Таблица 1
Удельные сопротивления различных проводников
Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.
Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.
Сопротивление проводника можно определить по формуле:
где r
– сопротивление проводника в омах;ρ – удельное сопротивление проводника;l – длина проводника в м;S – сечение проводника в мм².
Пример 1.
Определить сопротивление 200 м железной проволоки сечением 5 мм².
Пример 2.
Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².
Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.
Пример 3.
Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.
Пример 4.
Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.
Пример 5.
Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.
Материал проводника характеризует его удельное сопротивление.
По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.
Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.
У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.
Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.
Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления
и обозначается буквой α.
Если при температуре t
0 сопротивление проводника равноr 0 , а при температуреt равноr t , то температурный коэффициент сопротивления
Примечание.
Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).
Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).
Таблица 2
Значения температурного коэффициента для некоторых металлов
Из формулы температурного коэффициента сопротивления определим r t
r t
=r 0 .
Пример 6.
Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.
r t
=r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.
Пример 7.
Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.