Что такое электронный балласт для люминесцентных ламп и его виды

Разновидности

Первоначально в качестве ПРА для люминесцентной лампы использовались электромагнитные дроссели (балласты) со стартерами. Этот комплект назывался электромагнитным пускорегулирующим аппаратом – ЭмПРА. Позже появились электронные аналоги ЭмПРА на транзисторах и микросхемах, выполняющие ту же функцию. Они получили название ЭПРА (электронный пускорегулирующий аппарат), или просто «электронный балласт». Рассмотрим конструкцию и принцип работы этих пускорегулирующих устройств.

Нередко под ЭмПРА подразумевают только электромагнитный дроссель, что не совсем верно. ЭмПРА – это дроссель и стартер – два отдельных узла.

Электромагнитный

ЭмПРА – это обычный дроссель – катушка, намотанная на магнитопроводе, и газоразрядная малогабаритная лампочка со встроенными биметаллическими контактами (рабочими электродами).

Рассмотрим процессы, происходящие в светильнике с ЭмПРА. При включении в колбе стартера зажигается разряд, который нагревает электроды из биметалла. В результате электроды замыкаются и подключают к питающей сети через дроссель спирали электродов ЛЛ. При этом тлеющий разряд в колбе лампочки-стартера гаснет.

Спирали люминесцентной лампы разогреваются, их способность испускать электроны многократно увеличивается. После остывания контактов стартера они размыкаются. В результате на электродах ЛЛ появляется импульс высокого (до 1 кВ) напряжения, создаваемого самоиндукцией дросселя.

На схеме буквами обозначены:

  • А – люминесцентная лампа.
  • В – сеть переменного тока.
  • С – стартер.
  • D – биметаллические электроды.
  • Е – искрогасящий конденсатор.
  • F – нити накала катодов.
  • G – электромагнитный дроссель (балласт).

Высокое напряжение пробивает газовый промежуток. В колбе ЛЛ начинается разряд. При этом ртуть переходит в парообразное состояние, сопротивление газового промежутка резко падает. Чтобы разряд не перешел в неуправляемый дуговой, ток через лампу ограничивается дросселем с большим индуктивным сопротивлением. Поэтому его называют балластом.

Электронный

Внешне электронный балласт для люминесцентных ламп похож на электромагнитный. У него серьезные конструктивные отличия и другой принцип работы.

Как видно на фото, в электронном балласте много радиоэлементов. Рассмотрим типовую структурную схему ЭПРА и узнаем, как он работает.

Переменное сетевое напряжение проходит через фильтр электромагнитных помех, выпрямляется, сглаживается и подается на инвертор. Задача инвертора – обеспечить напряжение для работы ЛЛ. Сформированное инвертором напряжение через схему ограничения тока (балласт) подается на лампу. Схема запуска служит только для пуска ЛЛ. После выполнения своей функции в дальнейшей работе она не участвует.

Узлы инвертора, балласта и пуска на структурной схеме разделены условно. Часто функции балласта выполняет инвертор, дополнительно являющийся стабилизатором тока. В некоторых схемах он играет роль стартера, самостоятельно принимая решение о подогреве спиралей лампы и о подаче на них запускающего высоковольтного импульса.

Более простые схемы запуска представляют собой обычный конденсатор, образующий со спиралями и выходными дросселями колебательный контур. Последний настроен на частоту работы инвертора. Возникающий при погашенной лампе резонанс повышает напряжение на электродах лампы до единиц и даже десятков киловольт и зажигает разряд в колбе без предварительного подогрева спиралей (холодный пуск).

Что даёт такая схема? Прежде всего, мерцание. Обычный электромагнитный дроссель питает лампу переменным током частотой 50 Гц. Люминофор имеет малую инерционность и в промежутках между полуволнами заметно теряет яркость свечения. В результате люминесцентная лампа заметно мерцает. Это плохо для зрения.

Особенно заметно мерцание на изношенных лампах, люминофор которых теряет свойства инерционности.

Инвертор, питающий ЛЛ, работает на частотах десятка и даже сотни кГц. При этом инерционности люминофора достаточно, чтобы «переждать» паузы между питающими импульсами без заметной потери яркости. То есть благодаря ЭПРА у люминесцентной лампы малый коэффициент пульсаций.

Далее электронная схема обеспечивает стабильным питанием лампу, даже если сетевое напряжение отличается от номинального. К примеру, ЭПРА POSVET (фото см. выше) позволяет работать ЛЛ при напряжении в сети от 195 до 242 В. У лампы, подключённой через ЭмПРА, при таких напряжениях либо сократится срок эксплуатации, либо она не запустится.

Функции пускорегулирующей аппаратуры

Многие лампы дневного света до сих пор работают с электромагнитной пускорегулирующей аппаратурой – ЭмПРА, она же балласт. Простейшее устройство этого типа является обычным индуктивным сопротивлением, в состав входит металлический сердечник с намотанным на него медным проводом. Такая конструкция вызывает заметную потерю мощности, сопровождающуюся выделением большого количества теплоты.

Самая простая и дешевая – схема ЭмПРА со стартером. Ее работа осуществляется следующим образом. После включения питания, напряжение через обмотку дросселя и вольфрамовые нити поступает на электроды стартера. Сам стартер представляет собой небольшую колбу, наполненную газом. Под действием напряжения происходит образование тлеющего разряда. Начинается свечение инертного газа и его одновременный нагрев. Это приводит к включению контактов биметаллического датчика и образованию в цепи замкнутого контура, обеспечивающего нагрев нити самой лампы. Затем начинается процесс термоэлектронной эмиссии.

Что такое электронный балласт для люминесцентных ламп и его виды
На электродах стартера напряжение падает, уменьшается и разряд с одновременным понижением температуры. Контакты биметаллической пластины размыкаются, и подача тока прекращается. В работу включается дроссель, в котором образуется ЭДС самоиндукции. За счет этого между нитями накала возникает кратковременный разряд, достигающий нескольких тысяч вольт. Он пробивает среду инертного газа с ртутными парами, что приводит к появлению дуги, испускающей свет. В этот период стартер уже не работает, а дроссель за счет индуктивного сопротивления выполняет функцию ограничения тока, чтобы избежать перегорания элементов схемы.

В настоящее время появилась электронная пускорегулирующая аппаратура – ЭПРА, которая стала более совершенной и работоспособной. Данные устройства монтируются непосредственно в осветительные приборы, поскольку являются компактными и занимают очень мало места. Срок эксплуатации ламп с такой аппаратурой существенно увеличился. Свет стал более ровным и качественным, в нем полностью отсутствуют мерцания, пагубно влияющие на зрение.

Что такое электронный балласт для люминесцентных ламп и его виды
Электроды разогреваются очень быстро, буквально за доли секунды, после чего наступает плавное включение освещения. Так же легко светильники включаются и при низких температурах. Розжиг осуществляется под действием импульса высокого напряжения, затем начинается ровное горение при постоянной повышенном напряжении.

Основой схемы ЭПРА служит двухтактный преобразователь напряжения, которые может иметь полумостовую или мостовую конструкцию. В большинстве случаев используется первый вариант, в котором напряжение выпрямляется диодным мостом, после чего его сглаживает конденсатор до значения постоянного напряжения. Высокая частота создается полумостовым инвертором.

Также в схеме имеется трансформатор с тремя обмотками: основная подает напряжение к лампе, а две дополнительные выполняют открытие ключей на транзисторах.

Особенности ремонта

Наличие балласта обязательно не только для трубчатых конструкций люминесцентных ламп, но и для энергосберегающей компактной лампы дневного света. При этом схема компактных газоразрядных источников света более сложная, именно из-за своих небольших размеров. Это накладывает определенные ограничения для применения тех или иных конструктивных решений. Для того чтобы уместить в небольшом корпусе ЛДС все необходимые устройства, производителями используется упрощенная схема, что приводит к частым выходам из строя тех или иных элементов. Производить самостоятельный ремонт таких источников освещения очень затруднительно, опять же, из-за миниатюрных размеров всех деталей.

Популярные статьи  Как выполняется проверка изоляции кабеля

Мы рассмотрим некоторые нюансы, в которых заключается ремонт люминесцентных светильников.

Прежде чем начинать осмотр светильника и выявление детали, которой требуется ремонт, нужно проверить, поступает ли напряжение на лампу. Это лучше всего проверить тестером непосредственно на вводных клеммах. Чаще всего, чтобы добраться до них, требуется снять крышку и корпус светильника. Если напряжение поступает, то лампа обесточивается, и демонтируется, например, с потолка.

Ремонт ЛДС следует начинать с проверки работоспособности колбы. Для этого каждая пара контактов прозванивается тестером.

Далее ремонт продолжается визуальным осмотром на предмет выявления почерневших деталей или оплавленных проводов. Если этого не выявлено, следует прозвонить каждое устройство.

Типовые неисправности

В электромагнитных устройствах чаще всего требуют ремонт следующие элементы:

Стартер. Самый простой способ проверить его работоспособность, параллельно подключить 100% рабочий стартер

Здесь важно использовать аналогичный прибор по мощности и рабочему напряжению;
Дроссель. В случае если замена стартера не решила проблему, потребуется произвести прозвонку обмотки дросселя

Можно сразу заменить новым устройством с такими же параметрами.

Ремонт светильника, имеющего электронный пуск, заключается в замене балласта, который мы описывали выше.

Теперь вы знаете не только устройство основных типов пускорегулирующих устройств ламп дневного света, но также знаете, как проверить и произвести ремонт основных элементов люминесцентных светильников.

Схемы со стартером

Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.

Что такое электронный балласт для люминесцентных ламп и его видыСхема подключения люминесцентных ламп со стартером

Вот как она работает:

  • При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
  • Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
  • Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
  • За счет резкого скачка очень быстро разогреваются электроды.
  • Биметаллическая пластина стартера остывает и разрывает контакт.
  • В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.

Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.

Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА . Часто это устройство называют просто дросселем.

Что такое электронный балласт для люминесцентных ламп и его видыОдин из ЭмПРА

Недостатков у этой схемы подключения люминесцентной лампы достаточно:

  • пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
  • шумы при пуске и работе;
  • невозможность запуска при пониженной температуре;
  • длительный старт — от момента включения проходит порядка 1-3 секунд.

Две трубки и два дроссели

В светильниках на две лампы дневного света два комплекта подключаются последовательно:

  • фазный провод подается на вход дросселя;
  • с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
  • со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);

Так же подключается вторая трубка: сначала дроссель, с него  — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.

Что такое электронный балласт для люминесцентных ламп и его видыСхема подключения на две лампы дневного света

Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.

https://youtube.com/watch?v=8fF5KQk4L2k

Схема подключения двух ламп от одного дросселя (с двумя стартерами)

Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.

Электронный ПРА (балласт). Принцип работы.

Преимущества электронных ПРА

Электронный ПРА — балласт, спасающий лампу. В статье, ниже рассмотрим принцип построения, работу и элементную базу электронных балластов. Электромагнитный ПРА (дроссель-стартер) имеет массу недостат­ков: надоедливое жужжание, непроизвольные вспышки и частое мерца­ние, исходящие от светильников использующих ЛЛ.

Основным и единственным его преимуществом является его деше­визна. Но за низкой ценой дросселя и стартера скрываются высокие экс­плуатационные расходы и масса неприятных факторов, влияющих на здоровье людей.

Директивой Европейской комиссии №2000/55/ЕС предписан запрет на продажу и применение электромагнитных ПРА с целью ускорения повсеместного внедрения ЭПРА (электронных балластов) в странах Евросоюза. В США от использования электромагнитных балластов отказались еще раньше.

Директива комиссии ЕС о запрещении использования электромаг­нитных ПРА, возможно с некоторой задержкой, но неизбежно окажет влияние на принятие аналогичных решений и в России. Отрадным выгля­дит опыт Белоруссии. Там уже разработаны и сегодня действуют новые СНиППы, запрещающие устанавливать ПРА (стартеры и дроссели) в дошкольных и школьных учреждениях, учебных заведениях и больницах, а также на предприятиях, где требуется качественное освещение.

Бурное развитие электронной промышленности позволило создать электронный ПРА, обеспечивший совершенно новое качество работы люминесцентных ламп и светильников.

Широкое использование электронных ПРА (они же ЭПРА, они же электронные балласты) связано с рядом их существенных преимуществ по сравнению с электромагнитными ПРА. Разделим их на четыре группы.

Группа 1 — влияние на здоровье:

  • приятный немерцающий свет без стробоскопических эффектов и отсутствие шума благодаря работе в диапазоне 30—100 кГц;
  • слабое электромагнитное поле.

Группа 2 — комфортность:

  • надежное и быстрое (без мигания) зажигание ламп;
  • стабильность освещения независимо от колебаний сетевого напря­жения;
  • возможность регулировки светового потока;
  • отключение по истечении срока службы лампы.

Группа 3 — экономичность:

  • высокое качество потребляемой электроэнергии — близкий к еди­нице коэффициент мощности благодаря потреблению синусои­дального тока с нулевым фазовым сдвигом (при использовании ак­тивного корректора мощности);
  • уменьшенное на 20 % энергопотребление (при сохранении свето­вого потока) за счет повышения светоотдачи лампы на повышен­ной частоте и более высокий КПД ЭПРА по сравнению с классиче­скими электромагнитным ПРА;
  • увеличенный на 50 % срок службы ламп благодаря щадящему ре­жиму работы и пуска;
  • снижение эксплуатационных расходов за счет сокращения числа заменяемых ламп и отсутствия необходимости замены стартеров;
  • дополнительное энергосбережение до 70 % при работе в системах управления светом.
Популярные статьи  Что такое электродвижущая сила эдс

Схемы включения люминесцентных ламп

Наиболее распространенные схемы включения люминесцентных конструкций:

  • схема подключения с использованием электромагнитного балласта;
  • схема включения люминесцентных приборов освещения с применением электронного балласта.

Теперь давайте рассмотрим обе схемы более подробно.

Схема подключения люминесцентной лампы посредством электромагнитного балласта (ЭмПРА)

Сокращение ЭмПРА означает электронный пускорегулирующий аппарат, который еще известен как балласт либо же его называют дросселем.

Мощность ЭмПРА обязана соответствовать суммарной мощности ламп, которые подключены к нему. Данная стартерная схема достаточно старая и активно используется уже далеко не первое десятилетие. Стартером в этой схеме называют небольшую лампу, оснащенную неоновым наполнением, также в нее входят два биметаллических электрода.

Принцип включения люминесцентной конструкции согласно этой схеме следующий:

  • во время включения электропитания в стартере происходит разряд;
  • биметаллические электроды замыкаются накоротко;
  • ток в цепи стартера и электродов сводится только к внутреннему сопротивлению дросселя, что повышает рабочий ток почти втрое и разогревает ламповые электроды буквально за мгновение;
  • в это же время биметаллические контакты остывают и размыкается цепь;
  • в момент разрыва цепи дроссель создает запускающий импульс до 1 кВт, что происходит благодаря его самоиндукции;
  • происходит разряд в газовой среде прибора и он включается.

Помните, что стартеры на 127 Вольт не смогут работать в одноламповой системе и для нее потребуется стартер на 220 Вольт.

ЭмПРА, используемое при данной схеме, имеет свои преимущества:

  • удобство конструкции;
  • относительная надежность;
  • доступная цена.

Однако такой балласт имеет и свои недостатки, в числе которых следующие:

  • расход электроэнергии выше более чем на 15 процентов по сравнению со схемой подключения на основании электронного балласта;
  • время запуска зависит от износа конструкции и колеблется до 3 секунд;
  • со временем усиливается звук от гудения дроссельных пластин;
  • часто возникает стробоскопический эффект мерцания люминесцентной лампы, что негативно может сказаться на зрении человека;
  • система дает сбои при низких температурах. Так, ничего не будет работать в сильные холода в неотапливаемых помещениях при включении посредством данной схемы.

Схема подключения люминесцентной лампы при помощи электронного балласта (ЭПРА)?

ЭПРА расшифровывается как электронный пускорегулирующий аппарат (он же балласт). В отличие от электромагнитного балласта он подает на лампу напряжение не сетевой частоты, а высокочастотное (25-133 кГц). Такая схема исключает появление мигания, которое так часто нас раздражает и негативно влияет на зрение. В данном аппарате применена автогенераторная схема, которая включает трансформатор и выходной каскад с транзисторами.

Схемы подключения люминесцентных ламп при помощи электронного балласта есть разные, чаще всего они нанесены на блок конструкции и подключить их тем или иным способом не составляет труда.

Схемы с применением электронного пускорегулирующего балласта тоже имеют свои преимущества и недостатки.

Преимущества их такие:

  • специальный режим работы и запуска ЭПРА позволяет увеличить срок эксплуатации люминесцентной лампы;
  • до 20 процентов экономии электроэнергии по сравнению с электромагнитным балластом;
  • отсутствие шумов и мерцаний при работе лампы;
  • отсутствие часто ломающегося стартера;
  • наличие моделей, где есть возможность диммирования (регулировки яркости света).

Недостатков у данного балласта не так уж и много и они не слишком существенны:

  • сложная схема подключения;
  • высокие требования к качеству комплектующих и их установке.

Люминесцентные осветительные конструкции привыкли покупать те люди, которые хотят оптимизировать потребление электричества дома и на работе, а также желают сократить траты на приобретение новых осветительных приборов, приходящих со временем в негодность. Благодаря балластам, люминесцентные конструкции работают корректно. Естественно, больше преимуществ у схем включения люминесцентных ламп при помощи современного электронного балласта ЭПРА.

Общий принцип работы элемента

По сути, балласт для люминесцентных ламп представляет собой дроссель. Он регулирует силу подачи тока, ограничивая или разделяя разночастотные электрические сигналы. Ликвидирует пульсации постоянного тока. Происходит нагрев катодов люминесцентных ламп.

Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

В схему встроен и стартер. Его функции – трансляция напряжения и зажигание. При включении лампы, на микросхеме балласта происходит снижение силы тока. Данная особенность позволяет выстроить необходимый режим работы осветительного прибора.

Сегодня на рынке широко представлены такие виды балластных устройств, как:

  • электромагнитные;
  • электронные;
  • балласты для компактных ламп.

Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.

Электромагнитные

Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.

Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.

При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.

Плюсы Минусы
Высококлассный уровень надежности, доказанный практикой и временем. Долгий запуск — на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы.
Простота конструкции. Повышенный расход электроэнергии.
Удобство эксплуатации модуля. Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения.
Доступная цена для потребителей. Слышен гул работы дросселя.
Количество фирм производителей. Значительный вес конструкции и громоздкость.

Электронные

Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.

  • малый вес и компактность;
  • плавное быстрое включение;
  • в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
  • снижены потери на нагревание;
  • коэффициенты мощности в электронных схемах достигают 0,95;
  • продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
Достоинства Недостатки
Автоматическая настройка балласта под различные виды ламп. Более высокая стоимость, по сравнению с электромагнитными моделями.
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство.
Экономия потребления электроэнергии до 30%.
Исключен нагрев электронного модуля.
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения.
Увеличение срока службы люминесцентных ламп.
Дополнительная защита гарантирует увеличение степени пожаробезопасности.
Снижение рисков в процессе эксплуатации.
Ровная подача светопотока исключает быструю утомляемость.
Отсутствие негативных функций в условиях пониженных температур.
Компактность и легкость конструкции.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Популярные статьи  Почему электронный счетчик нева может не видеть тэн на 3 квт?

Как подключить электронный балласт своими руками к люминесцентной лампе

Замена люминесцентного балласта не слишком сложна, но, поскольку связана с электрическим напряжением, лучше доверить эту работу квалифицированному специалисту, если пользователь не имеет простейших навыков безопасной работы с электрооборудованием. Процедура замены балласта осветительного прибора зависит от типа установленной лампы.

Что такое электронный балласт для люминесцентных ламп и его виды
Подключение ЭБ

Алгоритм замены ЭБ своими руками:

  1. При установке проводки или замене балласта люминесцентного света сначала отключают электрическое питание на светильник и отсоединяют его от сети.
  2. Снимают пластину рассеивателя, закрывающую лампу.
  3. Снимают сам светильник.
  4. После того, как появится доступ к балласту, снимают его крышку, которая может отличаться по конструкции и способу крепления.
  5. Отсоединяют все провода, ведущие в балласт. Перед этим лучше сфотографировать подключение, чтобы не перепутать провода при обратной сборке устройства.
  6. Перед началом работ с ЭБ. Еще раз проверяют тестером отсутствие напряжения на нем.
  7. Снимают ЭБ, ослабив и удалив гайки, удерживающие его на месте, одновременно поддерживая его свободной рукой, чтобы предотвратить падение.

Схема подключения ЭБОбратите внимание! Замену производят на совместимую марку и модель балласта, собирая схему в обратном направлении. После тщательной проверки правильности подключения подают напряжение на светильник

Правильно установленные и функционирующие электрические осветительные балласты должны хорошо работать и обеспечивать безопасный, регулируемый ток для светильников без раздражающего мерцания и гудения, такого как в старых, магнитных или неисправных балластах.

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

Порядок подключения люминесцентных светильников к устройству пуска и регулирования, действующего на полупроводниковых элементах: 1 – интерфейс для сети и заземления; 2 – интерфейс для светильников; 3,4 – светильники; L – фазная линия питания; N – нулевая линия; 1…6 – контакты интерфейса

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Разводка подключения по четырехламповому варианту. В качестве устройства запуска и регулирования также используется электронный полупроводниковый ЭПРА. На схеме 1…10 – контакты интерфейса устройства пуска и регулирования

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп с помощью.

Это так называемые управляемые модели регуляторов. Рекомендуем подробнее ознакомиться с принципом работы регулятора мощности осветительных приборов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Четырехламповая конфигурация с возможностью плавной регулировки яркости свечения: 1 – переключатель режима; 2 – контакты подвода управляющего напряжения; 3 – заземляющий контакт; 4, 5, 6, 7 – люминесцентные лампы; L – фазная линия питания; N – нулевая линия; 1…20 – контакты интерфейса устройства пуска и регулирования

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Основные функции балласта

Основным конструктивным элементом люминесцентной лампы служит стеклянная трубка, заполненная внутри одним из инертных газов – аргоном, неоном или криптоном. К газовому наполнителю добавляется небольшое количество ртути. Концы трубки оборудованы металлическими электродами, через которые подается напряжение. Под действием электрического поля возникает пробой газовой среды, появляется тлеющий разряд и далее – электрический ток в цепи устройства. Газовый разряд начинает излучать свет бледно-голубых тонов, слабо видимый в обычном диапазоне.

Однако, действующий электрический разряд переводит значительную часть энергии в диапазон ультрафиолетового света, невидимого человеческим глазом. Попадая на люминофорное покрытие, нанесенное на стенки колбы, ультрафиолет превращается в видимое свечение, которое и является основным источником света.Что такое электронный балласт для люминесцентных ламп и его виды Путем изменения химического состава покрытия можно получить различную цветовую гамму свечения. В большинстве ламп используются оттенки белого цвета, а для оформления декора или дизайна интерьера применяются любые другие цвета. Данное свойство дает несомненное преимущество перед обычными лампами накаливания.

После появления в газовой среде тока, происходит его дальнейший лавинообразный рост, в результате чего внутреннее сопротивление резко падает. В этот момент может наступить перегрев, и лампа выйдет из строя. Чтобы не допустить этого, осуществляется последовательное включение дополнительной нагрузки, ограничивающей величину тока. Именно она служит балластом, известным также под названием дросселя.

Что такое электронный балласт для люминесцентных ламп и его виды

В люминесцентных схемах используется балласт электромагнитного и электронного типа. В первом случае используется классическая трансформаторная схема, состоящая из металлических пластин, медных проводов и других компонентов. Первоначальный запуск или поджиг выполняется пусковым устройством – стартером.

Второй вариант – электронный балласт для люминесцентной лампы, создан на базе электроники с использованием диодов, транзисторов, динисторов и микросхем. Данная схема выполняет и функцию пуска, в результате которого возникает тлеющий разряд. Таким образом, электронные устройства – ЭПРА получаются легкими и компактными, что во многом упрощает и всю конструкцию люминесцентной лампы.

Выбор ЭПРА.

Если Вы решились на модернизацию светильников путем замены дросселя и стартера на современный электронный пускатель для люминесцентных ламп, то первый фактор который нужно учесть, это производитель. От неизвестных марок и подозрительно дешевых устройств лучше отказаться. Но и нельзя сразу сказать, что дешево – это плохо и недолговечно. Информация сегодня открыта вся, желательно ознакомиться и с отзывами по конкретной модели в Интернете. Среди производителей внимания заслуживают:

  • Helvar,
  • Philips,
  • Osram,
  • Tridonic

Виды ЭПРА

При выборе важно изучить документацию. Наиболее важны следующие характеристики:

  • Тип источника света,
  • Мощность источников света,
  • Условия и режимы эксплуатации.

У некоторых моделей марок Tridonic, Philips, Helvar  имеется возможность подключения как переменного напряжения (~220), так и постоянного (=220).

Оцените статью
( Пока оценок нет )
Добавить комментарий