Общие сведения
Упорядоченное движение элементарных частиц, обладающих зарядом, приводит к появлению электрического тока. Его существование приводит к возникновению электромагнитного поля. Майкл Фарадей, зная об этом эффекте, предположил, что возможна и обратная зависимость. А натолкнул его на эти мысли эксперимент датского учёного Эрстеда.
В 1820 году физик из Дании провёл интереснейший опыт. Он взял магнитную стрелку и поместил над ней узкий проводник. Как только был подан ток, стрелка развернулась почти перпендикулярно к проводящему материалу. Если же он изменял направление протекания электротока, то указатель разворачивался на 180 градусов. Аналогично себя вела стрелка и при размещении её над проводником. Объяснить этот эффект можно было лишь предположением, что при протекании тока возникает магнитное поле, линии которого направлены радиально.
Считается, что явление было открыто случайно. Эрстед вёл преподавательскую деятельность. И вот на одном из своих уроков он демонстрировал ученикам эксперимент по тепловому воздействию электротока
Во время опыта один из студентов обратил внимание, что стрелка лежащего рядом компаса начинает отклоняться. Эрстед после отрицал случайность открытия, заявляя, что знал о нём заранее
Этот опыт стал первым эмпирическим доказательством взаимосуществования электрических и магнитных полей.
Открытие Эрстеда завлекло Фарадея. Он загорелся желанием научиться превращать магнетизм в электричество. Почти десять лет учёный ставил различные опыты, но только в 1831 году он смог открыть явление, позже названное электромагнитной индукцией. Благодаря ей учёный мечтал создать нового типа источник тока.
Майкл Фарадей – основоположник закона индукции
Ученый занимавшиеся изучением электричества – великий английский физик и химик Майкл Фарадей (1791-1867). Его заслуга в изучении взаимной магнитной индукции между двумя связанными контурами как основа при производстве электричества огромна.
Будучи сыном кузнеца, он был самоучкой, благодаря книгам по химии и электричеству, которые он читал во время своего ученичества в переплетной мастерской—работу, которую он начал в возрасте 14 лет. Когда он был еще подростком, у него была возможность посещать лекции великого химика Хамфри Дэви в Королевском институте. В возрасте 21 года Дэви нанял его помощником в Королевский институт, где Фарадей оставался в течение следующих 50 лет, будучи назначен заведующим его лабораторией в 1821 году. Хотя отсутствие формального образования оставляло ему математические пробелы, они были в значительной степени компенсированы поразительной экспериментальной интуицией, которая позволила ему стать одним из самых влиятельных экспериментальных исследователей всех времен.
В 1821 году Фарадей начал исследовать взаимодействие между магнитами и токами. Он разработал концепцию силовой линии (термин, который он ввел) для обоснования фигур, образованных железными опилками вблизи магнита. Используя эту концепцию, в августе 1831 года он открыл взаимную магнитную индукцию, отметив переходный ток, индуцируемый в катушке, когда ток включался и выключался во второй катушке. Обе катушки были намотаны на один и тот же тороидальный железный сердечник.
В октябре 1831 года Фарадей наблюдал самоиндукцию, возникающую в результате тока, индуцируемого в соленоидальной катушке движением магнита внутри ее отверстия.
Фарадей ввел термин электродвижущая сила для такого эффекта, и мы все еще видим это в использовании сегодня.
В 1831 году Фарадей также создал представление электромеханического генератора. Он ввел понятие диэлектрической проницаемости и построил первый переменный конденсатор в 1837 году. Он также изучал оптику и поляризацию света вместе со своим другом Чарльзом Уитстоуном, открыв в 1845 году эффект Фарадея (вращение поляризованного света при прохождении через намагниченную область).
Между 1846 и 1855 годами Фарадей признал магнитные свойства материи и ввел понятие диамагнетизма. Развивая идею силовых линий, он ввел понятия электрического и магнитного полей.
Не менее важными были открытия Фарадея в области химии, где он написал несколько прорывных работ. Он собрал свою колоссальную научную продукцию главным образом в экспериментальных исследованиях, опубликованных в нескольких номерах между 1839 и 1855 годами. Он выступал с памятными лекциями в Королевском институте, был назначен членом Королевского общества в 1824 году и дважды получил медаль Копли, в 1832 и 1838 годах, но отказался от дворянского титула и президентства Королевского института (1864) и не хотел регистрировать никаких патентов.
Энергия магнитного поля
Вспомним второй опыт с лампочкой, которая не горит при замкнутом ключе и ярко вспыхивает при размыкании цепи. Мы непосредственно наблюдаем, что после размыкания ключа в лампочке выделяется энергия. Но откуда эта энергия берётся?
Берётся она, ясное дело, из катушки — больше неоткуда. Но что за энергия была запасена в катушке и как вычислить эту энергию? Чтобы понять это, продолжим нашу электромеханическую аналогию между индуктивностью и массой.
Чтобы разогнать тело массы из состояния покоя до скорости , внешняя сила должна совершить работу . Тело приобретает кинетическую энергию, которая равна затраченной работе: .
Чтобы после замыкания цепи ток в катушке индуктивности достиг величины , источник тока должен совершить работу по преодолению вихревого электрического поля, направленного против тока. Работа источника идёт на создание тока и превращается в энергию магнитного поля созданного тока. Эта энергия запасается в катушке; именно эта энергия и выделяется потом в лампочке после размыкания ключа (во втором опыте).
Индуктивность служит аналогом массы ; сила тока является очевидным аналогом скорости . Поэтому естественно предположить, что для энергии магнитного поля катушки может иметь место формула, аналогичная выражению для кинетической энергии:
(3)
(тем более, что правая часть данной формулы имеет размерность энергии — проверьте!).
Формула (3) действительно оказывается справедливой. Уметь её выводить пока не обязательно, но если вы знаете, что такое интеграл, то вам не составит труда понять следующие рассуждения.
Пусть в данный момент сила тока через катушку равна . Возьмём малый промежуток времени . В течение этого промежутка приращение силы тока равно ; величина считается настолько малой, что много меньше, чем .
За время по цепи проходит заряд . Вихревое электрическое поле совершает при этом отрицательную работу:
Источник тока совершает такую же по модулю положительную работу (сопротивлением катушки, напомним, мы пренебрегаем, так что вся работа источника совершается против вихревого поля):
Интегрируя это от нуля до , найдем работу источника , которая затрачивается на создание тока :
Конструктивные особенности
Чтобы разобраться в формуле и принципе действия, нужно изучить, какой ток называют индукционным. Он начинает возникать во время изменения потока магнитной индукции в проводящем контуре. Для определения направления нужно использовать правило Ленца.
Когда изменяется поток, в контуре начинает происходить компенсация этих изменений. Если поле создаётся в другом контуре — направление начинает меняться. Происходит увеличение внешнего потока, поэтому индукционный ток изменяет направление на противоположное.
Катушки имеют два основных полюса — северный и южный. Полюс определяют в зависимости от текущего направления тока. Иногда индукционные линии могут выходить из северного полюса. Когда магнит постепенно приближается к катушке, то происходит явление магнитной индукции с принципом отталкивания.
Индукционный ток появляется, только если присутствует замкнутый контур, который расположен в переменном магнитном поле. Контур бывает неподвижным или движущимся. Существует несколько способов, позволяющих создать индукционный ток:
- перемещение постоянного магнита относительно катушки;
- изменение положения сердечника (он монтируется в катушку электрического магнита);
- размыкание и замыкание цепи;
- регулирование уровня.
Опыт с двумя катушками
Опыт с двумя катушками заключался в том, что по одной из них пропускали ток, к другой был подключен гальванометр. В момент начала или окончания пропускания тока по первой катушке стрелка гальванометра, подключенного ко второй, колебалась. Этот опыт Фарадея показывал, что не только магнетизм можно превратить в электричество, но и электричество в магнетизм. Переменный ток, пропускаемый через одну из двух расположенных близко друг к другу катушек, превращал ее в магнит, наводящий ток в соседней. Характеристики магнитного поля (полярность, интенсивность) зависели от силы пропускаемого тока.
На принципе взаимодействия катушек с переменным током работают современные трансформаторы, применяемые в электронике и электротехнике.
Закон Фарадея
Явление электромагнитной индукции определяется появлением электрического тока в электрически проводящей замкнутой цепи при изменении магнитного потока через область этой цепи.
Основной закон Фарадея состоит в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.
Формула закона электромагнитной индукции Фарадея выглядит следующим образом:
Рис. 2. Формула закона электромагнитной индукции
И если сама формула, основанная на приведенных выше пояснениях, вопросов не вызывает, то знак «-» может вызвать сомнения. Оказывается, существует правило Ленца, русского ученого, проводившего свои исследования на основе постулатов Фарадея. Согласно Ленцу, знак «-» указывает направление возникающей ЭДС, то есть индукционный ток направлен таким образом, что магнитный поток, который он создает через область, ограниченную цепью, стремится предотвратить изменение потока, которое вызывает такой ток.
Основные понятия и законы электростатики
Закон Кулона:
сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату их расстояния:
Коэффициент пропорциональности в этом законе
В SI коэффициент k записывается как
Потенциал электрического поля – это отношение потенциальной энергии заряда в поле к этому заряду:
Проекция напряженности электрического поля на ось и потенциал связаны соотношением
Электрическая емкость тела называется величиной отношения
Основные понятия и законы постоянного тока
Электрический ток – это прямое движение электрических зарядов. В разных веществах переносчиками заряда выступают элементарные частицы разного знака. Направление движения положительных зарядов считается положительным направлением тока. Электрический ток количественно характеризуется его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:
Закон Ома для участка цепи:
R
ρ
При параллельном подключении сопротивление, обратное сопротивлению, равно сумме обратных сопротивлений:
где t – время, I – сила тока, U – разность потенциалов, q – прошедший заряд.
Закон Джоуля-Ленца:
Основные понятия и законы магнитостатики
Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, необходимо определить как направление этого вектора, так и его величину. Направление вектора магнитной индукции связано с ориентационным действием магнитного поля на магнитную стрелку. Направление вектора магнитной индукции берется от южного полюса S к северному полюсу N магнитной стрелки, которая свободно установлена в магнитном поле.
Направление вектора магнитной индукции прямого проводника с токами можно определить с помощью правила подвеса:
если направление поступательного перемещения кардана совпадает с направлением тока в проводнике, то направление вращения ручки карданного подвеса совпадает с направлением вектора магнитной индукции.
Величина вектора магнитной индукции – это отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка:
Основные понятия и законы электромагнитной индукции
Если через замкнутую проводящую цепь проникает переменный магнитный поток, в этой цепи возникают ЭДС и электрический ток. Эта ЭДС называется ЭДС электромагнитной индукции, а ток – индукцией. Явление их возникновения называется электромагнитной индукцией. ЭДС индукции можно рассчитать по основному закону электромагнитной индукции или по закону Фарадея:
Электромагнитные колебания и волны
Колебательный контур – это электрическая цепь, состоящая из последовательно включенных конденсатора с емкостью C и катушки с индуктивностью L (см. Рис. 7).
Для незатухающих свободных колебаний в контуре циклическая частота определяется по формуле
Период свободных колебаний в контуре определяется формулой Томсона:
Ток, протекающий через катушку индуктивности, не совпадает по фазе с напряжением на 1/2 или четверть периода. Напряжение опережает ток на тот же фазовый угол.
Трансформатор – это устройство, предназначенное для преобразования переменного тока. Трансформатор состоит из замкнутого стального сердечника, на котором установлены две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке к вторичной обмотке трансформатора равно отношению количества витков в этих обмотках:
ФАРАДЕЙ, МАЙКЛ
ФАРАДЕЙ, МАЙКЛ
(Faraday, Michael) (1791–1867), английский физик. Также по теме: ФИЗИКА
Родился 22 сентября 1791 в предместье Лондона в семье кузнеца. С 12 лет работал разносчиком газет, затем учеником в переплетной мастерской. Занимался самообразованием, читал книги по химии и электричеству. В 1813 один из заказчиков подарил Фарадею пригласительные билеты на лекции Г.Дэви в Королевском институте, сыгравшие решающую роль в судьбе Фарадея. Благодаря Дэви он получил место ассистента в Королевской ассоциации.
В 1813–1815, путешествуя вместе с Дэви по Европе, Фарадей посетил лаборатории ряда стран. Помогал Дэви в химических экспериментах, начал самостоятельные исследования по химии. Осуществил ожижение газов, получил бензол. В 1821 впервые наблюдал вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создал первую модель электродвигателя. В течение последующих 10 лет занимался исследованием связи между электрическими и магнитными явлениями, в 1831 открыл электромагнитную индукцию, лежащую в основе работы всех электрогенераторов постоянного и переменного тока.
Также по теме:
ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ
В 1824 Фарадей был избран членом Королевского общества, в 1825 стал директором лаборатории в Королевской ассоциации. С 1833 состоял Фуллеровским профессором химии Королевского института, оставил этот пост в 1862. Широкую известность получили публичные лекции Фарадея. Используя огромный экспериментальный материал, Фарадей доказал тождественность известных тогда «видов» электричества: «животного», «магнитного», термоэлектричества, гальванического электричества и т.д. Стремление выявить природу электрического тока привело его к экспериментам по прохождению тока через растворы кислот, солей и щелочей. Результатом исследований стало открытие в 1833 законов электролиза (законы Фарадея). В 1845 Фарадей обнаружил явление вращения плоскости поляризации света в магнитном поле (эффект Фарадея). В том же году открыл диамагнетизм, в 1847 – парамагнетизм. Ввел ряд понятий – подвижности (1827), катода, анода, ионов, электролиза, электродов (1834); изобрел вольтметр (1833). В 1830-х годах предложил понятие поля, в 1845 впервые употребил термин «магнитное поле», а в 1852 сформулировал концепцию поля.
Основные работы по электричеству и магнетизму Фарадей представлял Королевскому обществу в виде серий докладов под названием Экспериментальные исследования по электричеству
(Experimental Researches in Electricity ). КромеИсследований , Фарадей опубликовал работуХимические манипуляции (Chemical Manipulation , 1827). Широко известна его книгаИстория свечи (A Course of Six Lectures on the Chemical History of a Candle , 1861).
Умер Фарадей в Хэмптон-Корте 25 августа 1867.
Открытие электромагнитной индукции
Практически сразу с момента открытия электрического тока было выявлено, что ток, проходящий по проводнику, создает магнитное поле.
Логично было предположить, что магнитное поле тоже может создать движение электрических зарядов в проводнике. Многие ученые безуспешно бились над этой задачей. Однако, электрические заряды, помещенные в постоянное магнитное поле, никак на него не реагировали.
Открытие было сделано М. Фарадеем 29 августа 1831 года (редкий случай, когда точно известна дата открытия).
Рис. 1. М. Фарадей.
В опыте использовались две катушки – одна создавала магнитное поле, вторая была расположена рядом, так, чтобы сквозь нее проходили магнитные линии первой катушки. Вторая катушка была подключена к гальванометру, который был предназначен для определения возникающего в ней электрического тока.
Рис. 2. Опыт Фарадея с двумя катушками.
Опыт давал отрицательный результат, постоянное поле, пронизывающее вторую катушку, не создавало в ней электрического тока, сколько бы времени не прошло. Но, Фарадей заметил, что перед самым опытом, в момент пуска электрического тока через первую катушку, стрелка гальванометра давала слабое колебание
Порядок опыта был перестроен – теперь главное внимание было уделено моменту включения. И выяснилось, что включение и выключение тока через первую катушку вызывает возникновение импульса тока во второй катушке. В дальнейшем было определено, что для появления импульса можно не только включать и выключать магнитное поле другой катушкой, а, к примеру, приближать и удалять обычный постоянный магнит
В дальнейшем было определено, что для появления импульса можно не только включать и выключать магнитное поле другой катушкой, а, к примеру, приближать и удалять обычный постоянный магнит.
Причем, возникающий ток (как и любой ток в проводнике) создает свое магнитное поле, а направлен он так, чтобы возникающее магнитное поле препятствовало причине, создавшей ток в контуре. Данное правило было позже открыто русским физиком Э.Ленцем.
Многие исследователи, разрабатывавшие теорию электричества, такие, как Х.Эрстед, Ж.Колладон, Дж.Генри, были близки к открытию. Но колебание стрелки в момент запуска или выключения установки они либо вообще не замечали, либо расценивали, как результат случайных внешних сотрясений и не придавали ему значения.
Взаимоиндукция
При расположении двух катушек рядом в них наблюдается ЭДС взаимоиндукции, которая определяется конфигурацией двух схем и их взаимной ориентацией. При возрастании разделения цепей значение взаимоиндуктивности уменьшается, поскольку наблюдается уменьшение общего для двух катушек магнитного потока.
Рассмотрим детально процесс возникновения взаимоиндукции. Есть две катушки, по проводу одной с N1 витков течет ток I1, которым создается магнитный поток и идет через вторую катушку с N2 числом витков.
Значение взаимоиндуктивности второй катушки в отношении первой:
М21 = (N2 x F21)/I1.
Значение магнитного потока:
Ф21 = (М21/N2) x I1.
Индуцированная ЭДС вычисляется по формуле:
Е2 = — N2 x dФ21/dt = — M21x dI1/dt.
В первой катушке значение индуцируемой ЭДС:
Е1 = — M12 x dI2/dt.
Важно отметить, что электродвижущая сила, спровоцированная взаимоиндукцией в одной из катушек, в любом случае прямо пропорциональна изменению электрического тока в другой катушке. Тогда взаимоиндуктивность считается равной:
Тогда взаимоиндуктивность считается равной:
М12 = М21 = М.
Вследствие этого , E1 = — M x dI2/dt и E2 = M x dI1/dt. М = К √ (L1 x L2), где К является коэффициентом связи между двумя значениями инжуктивности.
Взаимоиндукция широко используется в трансформаторах, которые дают возможность менять значения переменного электротока. Прибор представляет собой пару катушек, которые намотаны на общий сердечник. Ток в первой катушке формирует изменяющийся магнитный поток в магнитопроводе и ток во второй катушке. При меньшем числе витков в первой катушке, чем во второй, возрастает напряжение, и соответственно при большем количестве витков в первой обмотке напряжение снижается.
Помимо генерирования и трансформации электрической энергии, явление магнитной индукции используется в прочих приборах. К примеру, в магнитных левитационных поездах, движущихся без непосредственного контакта с током в рельсах, а на пару сантиметров выше по причине электромагнитного отталкивания.
Смотрите это видео на YouTube
Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки
Что такое индуктивность, в чём измеряется, основные формулы
Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле
История открытия электричества
Что такое амперметр и как им проводить измерения?
Что такое электрический ток простыми словами
Способы расчёта
Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.
Через силу тока
Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:
- L — индуктивность контура (в генри);
- Ф — величина магнитного потока, измеряемого в веберах;
- I — сила тока в катушке (в амперах).
Соленоид конечной длины
Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:
- µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
- N — количество витков в катушке;
- S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
- l — длина соленоида в метрах.
Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:
- W — энергия магнитного потока, измеряемая в джоулях;
- I — сила тока в амперах.
Катушка с тороидальным сердечником
В большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:
- N — число витков катушки;
- µ — относительная магнитная проницаемость;
- µ0 — магнитная постоянная;
- S — площадь сечения сердечника;
- π — математическая постоянная, равная 3,14;
- r — средний радиус тора.
Длинный проводник
Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:
- l — длина проводника в метрах;
- r — радиус сечения провода, измеряемый в метрах;
- µ0 — магнитная постоянная;
- µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
- µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
- π — число Пи;
- ln — обозначение логарифма.
Tags: , ампер, бра, буравчик, вид, вред, генератор, двигатель, дом, , знак, измерение, как, компьютер, конструкция, контур, , магнит, магнитный, паровой, постоянный, потенциал, правило, принцип, провод, , работа, размер, ряд, самоиндукция, сопротивление, схема, тен, ток, трансформатор, , эффект
Законы электролиза
Формула ЭДС индукции
Исторические опыты Фарадея в 1833 году были связаны и с электролизом. Он брал пробирку с двумя платиновыми электродами, погруженными в растворенный хлорид олова, нагретый спиртовой лампой. Хлор выделялся на положительном электроде, а олово – на отрицательном. Затем он взвешивал выделившееся олово.
В других опытах исследователь соединял емкости с разными электролитами последовательно и замерял количество осаждающегося вещества.
На основании этих экспериментов формулируются два закона электролиза:
- Первый из них: масса вещества, выделяемого на электроде, прямо пропорциональна количеству электричества, пропускаемого через электролит. Математически это записывают так:
m = K x q, где К – константа пропорциональности, называемая электрохимическим эквивалентом.
Сформулируйте его определение, как масса вещества в г, высвобождаемая на электроде при прохождении тока в 1 А за 1 с либо при прохождении 1 Кл электричества;
Первый закон электролиза
- Второй закон Фарадея гласит: если одинаковое количество электричества пропускается через разные электролиты, то количество веществ, высвобождаемых на соответствующих электродах, прямо пропорционально их химическому эквиваленту (химический эквивалент металла получается путем деления его молярной массы на валентность – M/z).
Для второго закона электролиза используется запись:
К = 1/F x M/z.
Здесь F – постоянная Фарадея, которая определяется зарядом 1 моля электронов:
F = Na (число Авогадро) х e (элементарный электрозаряд) = 96485 Кл/моль.
Запишите другое выражение для второго закона Фарадея:
m1/m2 = К1/К2.
Второй закон электролиза
Например, если взять две соединенных последовательно электролитических емкости, содержащие раствор AgNO 3 и CuSO 4, и пропустить через них одинаковое количество электричества, то соотношение массы осажденной меди на катоде одной емкости к массе осажденного серебра на катоде другой емкости будет равно отношению их химических эквивалентов. Для меди это – 63,5/2, для серебра – 108/1, значит:
m1/m2 = 63,5/(2 х 108).
Теория электромагнетизма со времен Фарадея продолжала развиваться. В середине 20-го века для закона индукции была применена формулировка в рамках квантовой теории электромагнитных полей – квантовой электродинамики. Сегодня, благодаря большой технической области использования, она представляет собой одну из наиболее точных физических теорий, проверенных посредством экспериментов.
Применение явления
Значение закона Фарадея трудно недооценить, понимая, в каких целях он используется на практике. Вся электрическая промышленность построена на реализации открытия учёного. Одним из устройств использующего принцип возникновения ЭДС за счёт движения замкнутого проводника в магнитном поле является электрический генератор.
Его работа заключается в том, что если постоянный магнит перемещать относительно контура, то возникнет электродвижущая сила. Соответственно подключив проводник к нагрузке, можно получить ток. А это значит, что механическая энергия превратится в электрическую. При этом различают два принципиально разных механизма работы:
- Индуцированный — вращение магнита, вокруг не изменяющего своё положение проводника. В этом случае электрическое поле двигает заряды через проводник.
- Двигательный — магнит неподвижен, а проводник вращается. Появляется сила Лоренца, и магнитное поле толкает заряды.
Второе, но не менее важное устройство, электродвигатель. По сути, это генератор работающий «задом наперёд». На заряд действует магнитная сила, вращающая диск в обратном направлении, определить которое можно по правилу левой руки
Если будут потери небольшие, например, связанные с трением или выделением тепла, то подключённый диск будет вращаться с такой скоростью, чтобы отношение dF / dt сравнялось с разностью потенциалов вызывающего ток
На заряд действует магнитная сила, вращающая диск в обратном направлении, определить которое можно по правилу левой руки. Если будут потери небольшие, например, связанные с трением или выделением тепла, то подключённый диск будет вращаться с такой скоростью, чтобы отношение dF / dt сравнялось с разностью потенциалов вызывающего ток.
На использовании ЭДС построена работа и трансформатора. Проходящий по первичным виткам переменный электрический ток приводит к возникновению магнитного поля. Последнее и наводит во вторичной обмотке электродвижущую силу. Если только концы катушки подключить к нагрузке, то через неё сразу же потечёт ток.
Энергосбережение
Закон Ленца отображает проявление энергетического сбережения. ЭДС создает ток, противостоящий перемене потока. Энергия способна войти или выйти, но это не происходит мгновенно. Закон Ленца выступает следствием. Как только начинается изменение, индукция выступает против. Если бы была положительная обратная связь, то индуцированная ЭДС оказывалась в том же направлении, что и измененный поток.
Магнитный поток, индукция и закон Фарадея |
|
Цепи переменного тока |
|
Применение индукционных и электромагнитных волн |
|
Магнитные поля и прогноз Максвелла |
|
Закон Ленца
Отметьте в формуле знак минус, потому что он играет важную роль. С его помощью мы понимаем, что созданные ЭДС ток и магнитное поле вступают в противостояние с переменой потока – закон Ленца. Заданное минусом направление было именовано в честь Генриха Ленца, который в одиночку занимался исследованием аспектов индукции. Конечно, Фарадей то же знал о направлении, но Ленц заявил об этом первым.
(а) Когда магнитный стержень входит в катушку, сила магнитного поля возрастает. Ток создает еще одно поле, но в противоположном направлении к магниту, чтобы вступить в противостояние увеличению. Это один из аспектов закона Ленца. (b) и (c) – Другие примеры ситуаций. Главное проверить, чтобы направление показывало противостояние перемене магнитного потока и отвечало правилу правой руки
Магнитный поток
Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.
Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.
Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.
Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).
Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.
Магнитным потоком через площадь S контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции B, площади поверхности S, пронизываемой данным потоком, и косинуса угла α между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):
Магнитный поток Ф — магнитный поток B — магнитная индукция S — площадь пронизываемой поверхности n — вектор нормали (перпендикуляр к поверхности) |
Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.
В зависимости от угла α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.
Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).
В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.