Электрические датчики давления

Содержание

Пьезорезистивный датчик давления

Электрические датчики давления

Практически все производители датчиков проявляют интерес к использованию интегральных чувствительных элементов на основе монокристаллического кремния. Это обусловлено тем, что кремниевые преобразователи имеют на порядок большую временную и температурную стабильности по сравнению с приборами на основе КНС структур. Кремниевый интегральный преобразователь давления (ИПД) представляет собой мембрану из монокристаллического кремния с диффузионными пьезорезисторами, подключенными в мост Уинстона. Чувствительным элементом служит кристалл ИПД, установленный на диэлектрическое основание с использованием легкоплавкого стекла или методом анодного сращивания. Принцип действия сенсора для пьезорезистивного датчика давления, как следует из названия, основан на пьезорезистивном эффекте – изменении сопротивления при наложении механического давления. Резисторы размещают на мембрае таким образом, чтобы продольные и поперечные коэффициенты тензочувствительности были разных знаков, тогда и изменения сопротивлений резисторов будут противоположными. Основным преимуществом пьезорезистивных дачткиков является более высокая стабильность характеристик, по сравнению с КНС преобразователями. ИПД на основе монокристаллического кремния устойчивы к воздействию ударных и знакопеременных нагрузок. Если не происходит механического разрушения чувствительного элемента, то после снятия нагрузки он возвращается к первоначальному состоянию, что объясняется использованием идеально-упругого материала.

Различия по использованию

По характеру измеряемого параметра различают следующие разновидности датчиков:

  • абсолютного давления;
  • избыточного давления;
  • дифференциальные.

Измерение давления чаще всего требуется для задания общих режимов работы оборудования: включения или выключения подающих насосов, системы подогрева и множества других управляемых автоматикой процессов. Простые по конструкции устройства прошлых лет измеряли перепад показателя по отношению к атмосферному, что не всегда удовлетворяло требованиям точности. Это связано с тем, что величина, с которой атмосфера давит на поверхность, может ощутимо меняться (в истории зафиксированы измерения от 641 до 816 мм ртутного столба).

Датчик абсолютного давления

Чтобы избежать ошибок из-за влияния погоды, более современные приборы способны отсекать влияние атмосферы. Они регистрируют измеряемую величину по отношению к глубокому вакууму. Такой сенсор называют абсолютным. Полученные от него показания чаще всего применяют для последующей цифровой обработки, чтобы расчетным путем привести характеристику давления к стандартным условиям. Это необходимо для правильной фиксации расхода тепловой энергии или газа в системах учета.

Датчик избыточного давления

Более простые в устройстве датчики избыточного давления учитывают суммарный показатель абсолютного и атмосферного. Без них не обойтись в коммунальном хозяйстве, в производственных или коммерческих устройствах, регистрирующих расход жидкости или газа. Другая область применения простых и надежных измерителей избыточного давления — устройства аварийной сигнализации о превышении допустимого уровня.

Дифференциальный датчик

Датчик дифференциального типа определяет разницу давлений в двух раздельных полостях. Обычно такие приборы установлены в приборе, который постоянно контролирует расход вещества, протекающего по трубе, без использования вращающихся деталей. Его принцип действия основан на эффекте увеличения давления потока перед сужением диаметра и уменьшения после него. Чем такая разница выше, тем больше и протекающий по трубе поток.

Одна из возможных схем подключения этих устройств приведена на рисунке.

Диапазон измеряемой величины

Поскольку интервал показателя давления весьма широк, то инженерам требуются сенсоры, способные качественно измерять параметры в интересующем диапазоне. Изготовить прибор, одинаково хорошо и с удовлетворительной чувствительностью применимый как в глубоком вакууме, так и на промышленном компрессоре высокого уровня сжатия, на практике невозможно. Поэтому существуют отдельные датчики: вакуумные, низкого и высокого давления. В числовом выражении:

  • вакуумные датчики — для измерения низкого (1 мм. рт. ст.) или высокого (105 мм. рт. ст.) вакуума;
  • датчики низкого давления — от атмосферного до величин порядка 10 Па (встречается также другое название: форвакуумные);
  • датчики высокого давления — измеряют параметр выше 1 атм., также делятся на диапазоны по возрастанию компрессии.

Датчики низкого давления широко применяют в научном и лабораторном оборудовании, в медицине, в промышленности, производящей электронные компоненты и сверхчистые вещества.

По типу контролируемой среды

Потребность узнать степень сжатия или разрежения рабочей среды может возникнуть для самых разных веществ или агрегатных состояний. Чтобы обеспечить долгий срок службы и достаточную точность показаний, регистрирующие приборы также делают с учетом условий, в которых им предстоит работать.

Обычно это:

  • датчики давления воздуха — замеряют показатель сжатия газообразной среды в широком интервале величин;
  • топливные — устанавливают в системе питания двигателей, например, в топливной рампе инжекторного мотора с целью оптимизировать состав и количество горючей смеси в цилиндрах;
  • водяные — для трубопроводов и магистралей в коммунальном хозяйстве, для установки на насосной станции;
  • для агрессивных сред — в защищенном исполнении используют в химическом производстве, при перекачке нефти и газа.

Виды ДДМ

Все подобные устройства классифицируются на два типа: аварийные и измерительные.

Аварийные датчики сигнализируют водителю об отсутствии давления масла в контуре. В этом случае на панели приборов автомобиля загорается индикатор.

Измерительные датчики – технически более сложные изделия. Они информируют автолюбителя о параметрах давления, измеряются:

  • в Паскалях;
  • барах;
  • Ньютонах/м2;
  • атмосферах;
  • килограмм/силе.

Единица измерения зависит от страны производителя транспортного средства.

ДДМ различаются по принципу работы. Эволюционный процесс устройства не отличается многообразием. Датчики появились на заре автомобилестроения практически одновременно с моторами. Вначале они представляли собой небольшую стеклянную колбу, размещённую в салоне. Она была вмонтирована в систему смазки силовой установки. Импульсивное движение смазочного материала внутри неё указывало шофёру, что давление функционирует нормально.

На смену этому виду пришли механические датчики. Их работа схожа по принципу действия с манометром. Изменение давления в системе приводит в движение механизм, который оснащён стрелочным индикатором. Такие устройства уже потеряли популярность, они встречаются на моделях прошлого столетия.

В настоящее время на большинстве современных моделях стоят электронные датчики, которые по своему назначению могут быть аварийными и измерительными.

Механическая конструкция

Механический датчик давления в настоящее время практически не используется. Он состоит из двух частей – мембранной и измерительной. Они связаны между собой трубкой, заполненной маслом. После запуска двигателя давление масла возрастает и мембрана прогибается. Она смещается, заставляя двигаться шток измерительной части прибора. Это движение через специальный механизм передается на стрелку аналоговой шкалы датчика, в результате чего водитель видит текущий показатель давления масла в системе.

Эти датчики громоздки, при этом существуют проблемы с их точностью, например, при термическом расширении масла. Тем не менее на основе таких приборов разработаны диагностические поверенные манометры, с помощью которых можно проконтролировать реальное давление в системе смазки двигателя.

Электрические и электронные

Электрический или электронный датчик давления масла устанавливается на подавляющее большинство современных автомобилей. Между этими двумя типами существуют отличия:

  1. Электронный или аварийный датчик давления работает в виде логического элемента в режиме да или нет. Если он загорается при работающем двигателе – это сигнал для водителя, что давление опустилось ниже допустимой нормы.
  2. Электрический или контрольный датчик масла по аналогии с механическим показывает давление масла в двигателе в режиме реального времени. Все данные выводятся на табло или стрелочный указатель.
Популярные статьи  Соединение алюминиевых и медных проводов между собой

В некоторых автомобилях, например, мощных тягачах или спортивных моделях, параллельно устанавливаются оба датчика, чтобы водитель мог отслеживать состояние двигателя и вовремя реагировать на масляное голодание, а в момент критического падения давления сразу остановиться, чтобы избежать поломки мотора.

Аварийный датчик представляет собой мембранный механизм с металлическим штоком, которому крепится контакт. Второй контакт неподвижно крепится к корпусу датчика. Когда двигатель не работает, они находятся в замкнутом положении и лампа на панели приборов горит. После запуска давление возрастает, и мембрана выгибается под давлением моторного масла, шток начинает двигаться и цепь размыкается – индикатор на панели приборов гаснет. Если же давления не хватает, чтобы выгнуть мембрану, цепь не размыкается и лампа продолжает гореть.

Принцип действия контрольного похож – он тоже работает от мембраны, выгибающейся под давлением масла. Но к ней через подвижный механизм присоединяется ползунок, двигающийся по реостату, изменяя сопротивление и силу тока в цепи. В зависимости от этого измерительная часть датчика выдает текущее давление масла в смазочной системе двигателя. Иногда вместо реостата в таких устройствах используются полупроводниковые или биметаллические преобразователи, но принцип их работы остается неизменным и зависит от движения мембраны.

Физическая сущность давления

Распределенная сила, с которой одно тело воздействует на другое, находящееся с ним в контакте. Для жидкости или газа оно является одним из основных параметров состояния. Единицами измерения давления являются:

• паскаль;

• килограмм∙сил/см2 или килограмм сил/м2;

• pound-force per square inch (фунт-сила на квадратный дюйм).

Для лабораторных расчетов чаще всего используются Па, КПа или МПа, тогда как килограмм∙сил/см2 или атмосферы (технические) можно увидеть в производстве. Дюймы-силы на квадратный дюйм используются странами с английской метрической системой, поэтому цифровые приборы, произведенные ими часто имеют шкалу измерения в psi.

Устройство и типы сенсоров

Принцип работы датчиков давления основан на фиксации изменения состояния среды чувствительным элементом (приемником). Электронный каскад вторичной обработки преобразует выходной сигнал до принятых стандартных параметров.

По типу чувствительного элемента существует несколько решений.

Емкостные

Данный вариант использует эффект изменения электрической емкости элемента, в котором гибкая мембрана является одной из обкладок конденсатора совместно с неподвижным корпусом. Преимущества в прямом измерении электрических характеристик без промежуточных преобразований; защищенности сенсора от перегрузок и импульсного удара; стабильности показаний. Именно такие датчики давления чаще применяют в промышленном оборудовании. Например, в компрессорах, воздушных и гидравлических насосах, диагностической аппаратуре.

Особый интерес представляет возможность изготовить именно такой датчик давления своими руками. Ведь из всех прочих разновидностей только емкостные сенсоры не требуют для производства точной механики или особого оборудования. Две токопроводящие пластины несложно соединить через прокладку из упругого диэлектрика, а настраивать самодельный датчик давления можно, используя в качестве эталона надежный проверенный манометр.

Индуктивные

Регистрируют токи в катушках с переменным полем, одна из которых располагается на упругой мембране. Небольшое перемещение магнита относительно воздушного зазора, приводит к сильному изменению индуктивности. Благодаря этому достигают высокой чувствительности сенсора.

Электронные

Кроме перечисленных, электронный датчик давления воздуха может быть реализован и на других физических принципах: изменении теплопроводности, ионизации газа. Такие сенсоры требуют точной настройки и используются в сложной аппаратуре и научных приборах. Их достоинство в способности измерять сверхнизкие давления, включая глубокий вакуум.

Тензометрические

Используется изменение электрического сопротивления при деформации тензорезистора, который расположен на упругом элементе. Сам тензорезистор изготовлен в виде тонких проводников на слюдяной или бумажной подложке площадью 2–10 квадратных мм.

По-другому этот тип сенсоров называется резистивным.

Механические

Группа устройств, в которых давление внутри системы приводит к механическому движению частей сенсора относительно неподвижного основания. Это перемещение регистрируется прибором.

Достоинством измерителей данной группы служит их очень высокая чувствительность в некоторых диапазонах, где другие конструкции недостаточно эффективны. Так датчик низкого давления в вакуумной системе должен реагировать на изменения порядка 0.01 Мпа. Этого можно добиться, применяя чувствительную мембрану. Другой тип механического измерителя — трубка Бурдона. Используется в приборах, в которых нет электроники, непосредственно воздействуя на стрелку. По этому принципу действуют механические манометры, а также глубиномеры (включая наручные для водолазов).

Похожий принцип реализован в знакомых многим автомобильных указателях моторного масла. Упругий элемент реагирует на сжатие, через толкатель перемещая подвижный контакт по обмотке реостата. Электрическое сопротивление изменяется, что и регистрирует прибор.

Области применения реле перепада давления

Реле перепада давления активно применяют в системах тепло- и водоснабжения, системах вентиляции и кондиционирования. Приведём типичный пример использования реле перепада.

Реле перепада давления в системах вентиляции

Электрические датчики давления

Два реле перепада давления устанавливаются в воздуховод и охватывают фильтр и вентилятор.

Датчик перепада, охватывающий фильтр измеряет разность давления на входе и на выходе фильтра. Когда эта разность достигает определённого уровня реле срабатывает — это означает, что фильтр загрязнён.

Реле перепада давления, охватывающее вентилятор служит для определения его вращения. Когда вентилятор в работе, на входе (со стороны всасывания) давление воздуха меньше, чем на выходе (со стороны нагнетания воздуха. Эту разность и улавливает реле и срабатывает, когда вентилятор вращается.

Сигналы «фильтр загрязнён» и «вентилятор вращается» с выходов реле перепада заводятся в контроллер приточной установки и используются для управления её работой.

Источник

Поймайте того, кто крадёт ваш телефон

Существует множество приложений, позволяющих отследить потерянный или похищенный телефон, но те, что используют встроенную камеру, способны причинить похитителю больше всего неудобств.

Бесплатное приложение Lockwatch для Android в случае ввода неправильного пароля для входа в систему снимает злоумышленника и отправляет вам электронное письмо с его фотографией и координатами GPS. Приложение запускается автоматически, а съёмка производится беззвучно фронтальной камерой, так что взломщик не узнает о том, что уже «спалился».

Ещё одно аналогичное приложение — GotYa! — вместе с фотографией похитителя пришлёт вам ссылку на Google Maps, но за него придётся заплатить разработчикам 80 рублей.

Проверка и ремонт

Если Вам нужно проверить устройство, то возьмите небольшой отрезок резинового шланга. К нему, с одной стороны, приделывается специальный переходник, который соответствует диаметру выхода насоса, а с другой – датчик аварийного давления машинного масла. Начинаем при помощи насоса создавать искусственное давление. Обязательно фиксируйте данные отношения давление/сопротивление. Если показания датчика и его характеристики совпадают, то прибор исправен.

Есть еще один способ, как проверить датчик. Нужно поместить его в пенный раствор, с большим количеством мыла. Немного подержав там датчик. Выньте его и подключите к насосу. Нагнетайте при помощи насосной установки давление в приборе. Если из сфальцованных стыков пойдут пузыри – устройство непригодно и пропускает масло.

Но если Вы убедились в неисправности, необходимо заменить извещатель. Датчик аварийного давления масла у восьми клапанного двигателя находится с правой стороны от мотора, а у шестнадцати клапанного – с левой. Место его расположения может меняться в зависимости от модели и марки автомобиля. Чтобы его снять, воспользуйтесь нашей инструкцией:

  1. Отключите от датчика провод, идущий на приборную панель;
  2. Под датчиком расположена резьба, поэтому аккуратно выкрутите его гаечным ключом. Если она сорвана, то постарайтесь снять его при помощи пассатижей;
  3. После нужно просто вынуть датчик из отверстия.
Популярные статьи  Почему индукционная плита отключается во время приготовления

Сразу же осмотрите уплотнительное кольцо из алюминия. Именно оно может служить причиной протекания масла. В зависимости от результатов диагностики, Вам нужно будет купить или новый датчик, или заменить уплотнитель. Процесс установки нового прибора является противоположным снятию. Обязательно проверьте прочность соединения контрольной лампы и датчика аварийного сигнала масла. При этом способ снятия и подключения во многом зависит от того, какая марка у сигнализатора и модель у автомобиля.

Фото — замена аварийного датчика давления масла

Иногда проблема может крыться в способе установке датчика. Так, например, Лендкрузер Дизель известен тем, что там прибор может «проваливаться» в поддон, из-за чего давать неверные показания. Иногда окислилась схема или просто оборвался провод компьютерного управления извещателем. Также если датчик криво стоит, то он может неправильно измерять уровень давления из-за деформации мембраны.

Цена датчика варьируется от нескольких сотен на бывший в употреблении до нескольких тысяч рублей (например, на эксклюзивные устройства). Желательно консультироваться с продавцом перед покупкой устройства, т. к

очень важно, чтобы оно подошло именно Вашему авто

Вам также может быть интересно

Как проверить электронный датчик давления масла

Чтобы проверить электронный датчик давления потребуется мультиметр и насос (желательно с манометром). Перед началом проверки необходимо снять датчик с автомобиля и перевести мультиметр в режим диагностики цепи «на обрыв». Соедините датчик с насосом и подключите к нему мультиметр. Лучше использовать насос с манометром, чтобы не подать лишнее давление, от которого электронный прибор выйдет из строя.

Объединив насос, манометр и мультиметр, убедитесь, что на шкале стрелка находится в нуле. Далее подайте минимальное давление от насоса, в результате чего на рабочем датчике мембрана должна согнуться, сдвинуть толкатель и цепь разомкнется, что приведет к отклонению стрелки прибора в сторону бесконечности. Также рекомендуется подать давление, приближенное к максимальному, и убедиться в работоспособности датчика в подобном режиме.

Как проверить механический датчик давления масла

Принцип проверки механического датчика давления масла практически не отличается от диагностики электронного варианта. Для проведения процедуры потребуется насос c манометром и небольшой резиновый шланг. При проверке датчик необходимо снять вместе со стрелочным указателем. Насос подключается к датчику при помощи резинового шланга, при этом соединение должно быть герметичным. Когда все будет соединено, необходимо начать подавать различное давление, контролируя его по манометру. В момент подачи определенного давления, его значение записывается и также фиксируется сопротивление. Когда несколько значений будут сняты, можно сравнивать полученные данные с таблицей идеальных значений, которая разнится от автомобиля к автомобилю, и ее можно узнать из технической документации к машине или в интернете.

Критерии отбора датчика

Для того чтобы контролируемая давлением система работала правильно и эффективно, важно, чтобы используемый датчик давления мог давать точные показания по мере необходимости и в течение длительного периода времени без необходимости ремонта или замены в условиях работы системы. Существует несколько факторов, влияющих на пригодность конкретного датчика давления для конкретного процесса

Основные это:

  • характеристики используемых веществ в среде которых будет использоваться устройство;
  • условия окружающей среды;
  • диапазон давлений;
  • уровень точности и чувствительности, требуемые в процессе измерения.

Что такое пьезоэлектрический эффект?

Пьезоэлектричество было открыто в 1880 году братьями Жаком и Пьером Кюри. Они заметили, что при давлении на кварц или отдельные кристаллы образуется электрический заряд. Позже это явление получило название пьезоэлектрического эффекта.

Вскоре братья Кюри открыли обратный пьезоэлектрический эффект. Это было после приложения к материалу или кристаллу электрического поля, которое привело к механической деформации объекта.

Термин пьезоэлектричество происходит от греческого слова «пьезо», что обозначает сжатие. Стоит отметить, что от греческого слова «янтарь» происходит слово «электричество». Янтарь тоже может быть источником электрической энергии.

Многие современные электронные устройства используют пьезоэлектрический эффект для своей работы. Например, при использовании некоторых устройств распознавания звука микрофоны, которые они используют, работают на основе упомянутого выше эффекта. Пьезоэлектрический кристалл превращает энергию вашего голоса в электрический сигнал, с которым могут работать смартфоны, компьютеры и другие электронные устройства.

Создание некоторых продвинутых технологий тоже стало возможно благодаря пьезоэлектрическому эффекту. Например, мощные гидролокаторы используют маленькие чувствительные микрофоны и керамический звуковой датчик, созданные на основе пьезоэлектрического эффекта.

Датчики давления

Механические датчики давления состоят из:

  1. Жидкостных датчиков давления.
  2. Поршневых систем.
  3. Пружинных систем.

Теперь пришло время рассмотреть датчики движения, которые встречаются наиболее часто. Наиболее часто на сегодняшний день используют пружинные датчики давления. Их действие будет основано на том, что возникновении упругой деформации пружины, которая считается пружинным элементом прибора. При изменении давления будет возникать деформация внутри и снаружи. Изменение формы определенного элемента будет передаваться на подвижную часть прибора со стрелкой. При снятии давления элемент примет прежнюю форму.

Электрические датчики давления

В технических манометрах чаще всего применяются упругие пружины:

  • Одновитковые.
  • Многовитковые.
  • Плоские мембраны.
  • Сильфоны.

Раскручивание пружины будет происходить из-за того, что при увеличении внутреннего давления эллиптическое сечение будет стремиться принять круглую форму. В результате этого могут возникать напряжения, которые будут раскручивать пружину. Свободный конец будет перемещаться прямопропорционально давлению внутри ее. Таким образом, можно сказать о том, что измеряемое давление будет преобразовываться в механическое перемещение свободного конца пружины. Величина такого перемещения чаще всего будет составлять 5-7 мм.

Электрические датчики давления

Многовитковая трубчатая пружина будет иметь 6-9 витков. Перемещение свободного конца пружины значительно больше, чем у одновитковой пружины. Обычно датчики в виде одновитковой пружины могут применяться в показывающих приборах. В большинстве случаев это будет связано с тем, что в самопишущих приборах датчик должен иметь большое усилие, которого хватит для преодоления трения. В нашем разделе также есть статья о том, как работает тензодатчик.

Электрические датчики давления

Плоская гофрированная мембрана будет использоваться отдельно. При необходимости также можно применять плоскую прорезиненную ткань, которая будет плотно соединена с плоской калиброванной пружиной. Гармоникообразная мембрана отличается от других, так как имеет наибольшую чувствительность.

Сильфонные приборы предназначаются для измерения и записи избыточного давления в схемах автоматизации. Кроме этого, подобные устройства также можно использовать в качестве вторичных приборов к устройствам, которые имеют приспособление для пневматической передачи показаний на расстояние. Пружинные датчики давления в схемах позволяют преобразовывать механическое перемещение в электрический сигнал с помощью индуктивного или контактного датчика.

Электрические датчики давления

На рисунке выше представлена схема датчика давления типа МЭД. Здесь сначала давление будет восприниматься трубчатой манометрической пружиной. В дальнейшем оно будет преобразовываться в перемещение конца манометрической трубки. Это перемещение также может передаваться плунжеру трансформаторного датчика. Вторичным приборов в этой конструкции считается устройство типа ЭПИД.

Специалисты сообщают, что датчики расхода на сегодняшний день могут быть:

  1. Механические.
  2. Термические.
  3. Ионизационные.
  4. Индукционные.
  5. Акустические.

Датчики расхода будут действовать по принципу возникновения перепада давления в сужающем устройстве. Перепад давления в этом случае является функцией расхода. Сужающее устройство считается воспринимающим органом датчика расхода. Датчики расхода постоянного перепада (ротаметры) используются для регулирования сечения с целью поддерживания постоянным перепада давления. Если будет интересно, тогда можете прочесть про принцип работы термопары.

Электрические датчики давления

На рисунке, который расположен выше вам предоставлена схема ротаметра с индуктивным датчиком. Ротаметр состоит из:

  • Конической трубки.
  • Поплавка.

Во время движения жидкости или газа в кольцевом зазоре между поплавком и трубками будет создаваться перепад давления, который в дальнейшем будет создавать силу, действующую навстречу силе веса поплавка, который здесь расположен. Ротаметры на сегодняшний день могут выполняться, как показывающие приборы и как датчики. Обмотка индуктивного датчика располагается на трубке сопла. Железный поплавок в свою очередь будет являться сердечником катушки индуктивного датчика. При изменении расхода поплавок может перемещаться и соответственно изменять индуктивность катушки.

Популярные статьи  Электропроводность веществ

Устройство и принцип действия

На сегодняшний день существует огромное количество датчиков уровня жидкости, которые отличаются как конструкцией, так и способом выполнения замера. В виду чего рассмотрим устройство на примере наиболее простой поплавковой модели уровнемера. Конструктивно поплавковый датчик уровня жидкости состоит из следующих компонентов:

Электрические датчики давления

  • поплавок 1 – предназначен для взаимодействия с поверхностью жидкости;
  • сильфон 2 – представляет собой чувствительный гофрированный элемент, способный сохранять свои свойства при многократных механических деформациях;
  • фланец 3 – используется для соединения с монтажной поверхностью, позволяет увеличить плотность крепления
  • микропереключатель 4 – срабатывает от перемещения поплавка в геометрической плоскости, для предотвращения взаимодействия с влагой помещается в герметичный корпус.
  • прокладка 5 – используется для герметизации отверстия, предотвращает протекание жидкости из емкости.

Принцип действия такого датчика основывается на архимедовой силе любой жидкости.

Электрические датчики давления

При помещении датчика в емкость с жидкостью происходит взаимодействие поплавка с поверхностью. За счет архимедовой силы поплавок выталкивается наружу и находится в том же положении, что и уровень.

При среднем положении жидкости 1 поплавок останется в нейтральном положении, сигнал от переключателя не поступает на пульт управления или панель сигнализации. В случае наполнения резервуара до позиции 2 поплавок поднимется выше и переведет микропереключатель в соответствующее положение. Если жидкость в резервуаре опустится ниже номинального уровня, поплавок переместится в нижнюю позицию 3 и переведет контакты микропереключателя. Каждый раз на выходе датчика будет появляться соответствующий сигнал о степени наполнения, однако принцип действия будет отличаться в зависимости от типа устройства.

Датчики уровня

В последнее время наиболее распространенными устройствами считаются поплавковые датчики. Поплавковый датчик будет состоять из: поплавка, промежуточного и выходного органа. Поплавок – это орган, который позволяет воспринимать уровень жидкости. Преобразующий орган позволяет механическое воздействие выходному органу.

Датчики уровня могут быть основаны на измерении веса и гидростатического давления, а также на использовании электрических свойств жидкости.

Отечественная промышленность старается выпускать датчики давления разнообразного типа. Теперь вы точно знаете, принцип работы датчиков давления, расхода и уровня. Надеемся, что эта информация была полезной и интересной.

Задачи и примеры на подбор датчика определенного типа

Проблема полупериодического реактора

Предположим, что имеется полунепрерывный реактор емкостью 1000 л с 50 кг цинка внутри под давлением 1 атм. и температурой равной 25°С. 6М хлористоводородной кислоты течет в реактор со скоростью 1 л / мин и вступая в реакцию с цинком производит хлорид цинка для использования в другом процессе.

А) Какие факторы следует учитывать?

Б) Скажите, если клапан выйдет из строя при рабочем давлении 4 атм. (т.е. он не закроется и реактор будет залит HCl) На какое давление вы можете безопасно установить точку останова?

С) Какой тип датчика должен быть использован?

Решение:

Факторы, которые следует учитывать:

  1. Процесс
    1. Соляная кислота очень и очень едкая (особенно с такой высокой молярностью), и, таким образом любой датчик, который бы вы ни выбрали, должен быть в состоянии выдержать коррозионную природу процесса.
  2. Диапазон давления
    1. Изначально реактор находится под давлением в 1 атм. Учитывая реакцию 2 HCl (жидк.) + Zn (металл.) -> H 2 (газ) + ZnCl 2 (жидк), вы производите один моль газообразного водорода в дополнение к существующему давлению воздуха в емкости. По мере протекания реакции, давление внутри сосуда будет существенно увеличиваться. Моделирование давления H 2 (газ) в идеальных условиях равно, Р = НЗТ / V
    2. Примерно через 1 час, давление H 2 (газ) увеличится до 4,38 атм, создав общее давление в сосуде на 5,38 атм.
  3. Окружающая среда
    1. Здесь нет опасности от высоких температур и сильной вибрации из-за высокого расхода и скорости реакции.
  4. Чувствительность
    1. Так как это умеренно опасный процесс, мы должны иметь выход датчика подключаемый к компьютеру. Так, инженер может безопасно наблюдать за процессом. Мы предполагаем, что датчик будет сигнализировать клапан HCl, чтобы закрыть его после того, как рабочее давление станет равным 3 атм., однако устройства иногда дают ошибку. Мы также должны иметь высокую чувствительность, поэтому предпочтительными будут электрические компоненты (т.е. мы не хотим, чтобы процесс отклонялся от нормального режима, хотя это потенциально возможно, если бы датчик был не очень чувствителен к постепенным изменениям).

Точка отключения

Принимая во внимание быстрое увеличение давления, как оценено в пункте (2), и отказ клапана при 4 атм., точка выключения должно быть примерно равна 3 атм

Тип датчика:

Учитывая типы датчиков, которые мы обсуждали, мы можем сразу отбросить вакуумные датчики, так как они работают при очень низких давлениях (почти вакууме, отсюда и название). Мы можем также отбросить дифференциальные датчики давления, поскольку мы не ищем перепада давления на резервуаре.

Поскольку мы хотим добиться высокой чувствительности, мы должны использовать электрические компоненты

Учитывая диапазон давлений (3 атм.; макс ~ 0,3 МПа) оптимальным будет емкостной элемент, потому что он прочный и хорошо работает в системе низкого давления.

Принимая во внимание коррозионную активность в системе с содержанием HCl , в качестве упругого элемента может быть использована мембрана. Мембраны также довольно прочны и обеспечивают быстрое время отклика.

Эта комбинация, вероятно, будет заключена в прочном, заполненном, глицерином / силиконом корпусе, чтобы защитить датчик от деградации.

Так, в итоге, мы выбираем датчик, который будет использовать диафрагму в качестве упругого элемента, емкостной элемент качестве электрического компонента и антикоррозийный корпус.

Пример 2

Ваш руководитель сказал вам добавить датчик давления в очень дорогой и важной части оборудования. Вы знаете, что часть оборудования работает на 1 МПа и при очень высокой температуре

Какой датчик вы бы выбрали?

Решение

Поскольку часть оборудования, которое вы имеете дело очень дорогое, вам нужен датчик, который имеет высокую чувствительность. Электрический датчик был бы подходящим, потому что вы могли бы подключить его к компьютеру для быстрого и простого считывания показаний. Кроме того, вы должны выбрать датчик, который будет работать на 1 МПа и сможет выдерживать высокие температуры. Из информации представленной в этой статье вы знаете, что есть много датчиков, которые будут работать при давлении 1 МПа, так что вы должны решить, относительно других влияющих факторов. Одним из наиболее чувствительных электрических датчиков является датчик емкостного типа. Он имеет чувствительность 0.07 МПа. Емкостный датчик обычно имеет диафрагму в качестве упругого элемента. Мембраны имеют быстрое время отклика, очень точны и работают на 1 МПа.

Применяемость электронных датчиков.

Электронный датчик давления, как и аналоговый датчик, служит для преобразования давления жидкости или газа в электрический сигал. На сайте рассматривались резисторные датчики давления, применяемые с аналоговыми приборами. Но с развитием электроники на автомобилях широко начали применяться электронные панели приборов, для роботы которых необходимы датчики с другим принципом действия и большей точности. Это  привело к разработке ионизационных, тензометрических, ёмкостных, резонансных, пьезорезистивных и ионецонных датчиков. Все эти датчики имеют свои преимущества и недостатки.

Оцените статью
( Пока оценок нет )
Добавить комментарий