Пуск путем изменения питающего напряжения
Одним из вариантов снижения токовой нагрузки при запуске электродвигателя является уменьшение питающего номинала посредством генератора постоянного напряжения или управляемого выпрямителя.
С физической точки зрения установка реостата обеспечивает тот же эффект, но с увеличением мощности электродвигателя возрастает и постоянная токовая нагрузка, существенно повышаются потери на реостатах. Поэтому снижение постоянного напряжения выполняет отдельное устройство на базе микросхемы, пример которого приведен на рисунке ниже:
Рис. 5. Схема пуска с изменением питающего напряжения
Пуск с помощью пускового реостата
В этом случае в цепь вводится переменное сопротивление, которое на начальном этапе обеспечивает снижение токовой нагрузки, пока вращение ротора не достигнет установленных оборотов. По мере стабилизации ампеража до стандартной величины в реостате уменьшается сопротивление от максимального значения до минимального.
Расчет электрической величины в этом случае будет производиться по формуле:
В лабораторных условиях уменьшение нагрузки может производиться вручную – посредством перемещения ползунка реостата. Однако в промышленности такой метод не получил широкого распространения, так как процесс не согласовывается с токовыми величинами. Поэтому применяется регулировка по току, по ЭДС или по времени, в первом случае задействуется измерение величины в обмотках возбуждения, во втором, на каждую ступень применяется выдержка времени.
Оба метода используются для запуска электродвигателей:
- с последовательным;
- с параллельным возбуждением;
- с независимым возбуждением.
Запуск ДПТ с параллельным возбуждением
Такой запуск электродвигателя осуществляется посредством включения и обмотки возбуждения, и якорной к напряжению питания электросети, друг относительно друга они располагаются параллельно. То есть каждая из обмоток электродвигателя постоянного тока находятся под одинаковой разностью потенциалов. Этот метод запуска обеспечивает жесткий режим работы, используемый в станочном оборудовании. Токовая нагрузка во вспомогательной обмотке при запуске имеет сравнительно меньший ток, чем обмотки статора или ротора.
Для контроля пусковых характеристик сопротивления вводятся в обе цепи:
Рис 1. Запуск ДПТ с параллельным возбуждением
На начальном этапе вращения вала позиции реостата обеспечивают снижение нагрузки на электродвигатель, а затем их обратно выводят в положение нулевого сопротивления. При затяжных запусках выполняется автоматизация и комбинация нескольких ступеней пусковых реостатов или отдельных резисторов, пример такой схемы включения приведен на рисунке ниже:
Рис. 2. Ступенчатый пуск двигателя параллельного возбуждения
- При подаче напряжения питания на электродвигатель ток, протекающий через рабочие обмотки и обмотку возбуждения, за счет магазина сопротивлений Rпуск1, Rпуск2, Rпуск3 нагрузка ограничивается до минимальной величины.
- После достижения порогового значения минимума токовой величины происходит последовательное срабатывание реле K1, K2, K3.
- В результате замыкания контактов реле K1.1 шунтируется первый резистор, рабочая характеристика в цепи питания электродвигателя скачкообразно повышается.
- Но после снижения ниже установленного предела замыкаются контакты K2.2 и процесс повторяется снова, пока электрическая машина не достигнет номинальной частоты вращения.
Торможение электродвигателя постоянного тока может производиться в обратной последовательности за счет тех же резисторов.
Запуск ДПТ с последовательным возбуждением
На рисунке выше приведена принципиальная схема подключения электродвигателя с последовательным возбуждением. Ее отличительная особенность заключается в последовательном соединении катушки возбуждения Lвозбуждения и непосредственно мотора, переменное сопротивление Rякоря также вводится последовательно.
По цепи обеих катушек протекает одинаковая токовая величина, эта схема обладает хорошими параметрами запуска, поэтому ее часто используют в электрическом транспорте. Такой электродвигатель запрещено включать без усилия на валу, а регулирование частоты осуществляется в соответствии с нагрузкой.
Пуск ДПТ с независимым возбуждением
Подключение электродвигателя в цепь с независимым возбуждением производится путем ее запитки от отдельного источника.
Рис. 4. Запуск ДПТ с независимым возбуждением
На схеме приведен пример независимого подключения, здесь катушка Lвозбуждения и сопротивление в ее цепи Rвозбуждения получают питание отдельно от обмоток двигателя током независимого устройства. Для обмоток двигателя также включается регулировочный реостат Rякоря. При этом способе запуска машина постоянного тока не должна включаться без нагрузки или с минимальным усилием на валу, так как это приведет к нарастанию оборотов и последующей поломке.
Классификация моторов ПТ
Различия между видами электромоторов заключаются в типе магнитов и способе возбуждения. Магниты могут быть как постоянными, так и электромагнитами. Преимущества постоянного магнита (в отличие от электромагнита):
- компактность;
- не требует источника энергии для работы.
Вид возбуждения ДПТ зависит от места присоединения обмотки полюсов. В связи с этим различают независимое возбуждение мотора (обмотка возбуждения питается от постороннего источника) и самовозбуждение (обмотка возбуждения присоединена к обмотке якоря). Двигатели с самовозбуждением носят более короткие названия:
- шунтовые (параллельное соединение обмоток);
- сериесные (последовательное соединение обмоток);
- компаундные (смешанное соединение обмоток).
Электромоторы применяются в различных областях промышленности и сельского хозяйства, а также бытовых установках. Их разнообразие велико. Основные типы ДПТ:
- традиционного назначения;
- специального назначения.
Классификация МПТ по способу питания обмоток индуктора и якоря
По данному признаку МПТ делятся на 4 вида.
С независимым возбуждением
Обмотки индуктора и якоря не имеют электрического соединения. У генераторов этого типа обмотку возбуждения питает сеть постоянного тока, аккумулятор или специально предназначенный для этого генератор — возбудитель. Мощность последнего — несколько сотых мощности основного генератора.
Область применения генераторов с независимым возбуждением:
- системы значительной мощности, где напряжение на обмотке возбуждения существенно отличается от генерируемого;
- системы регулирования скорости вращения двигателей, запитанных от генераторов.
У двигателей с независимым возбуждением запитана и якорная обмотка. В основном это также агрегаты большой мощности.
Независимость обмотки индуктора позволяет удобнее и экономичнее регулировать ток возбуждения. Еще одна особенность таких моторов — постоянство магнитного потока возбуждения при любой нагрузке на валу.
С параллельным возбуждением
Обмотки индуктора и якоря соединены в одну цепь параллельно друг другу. Генераторы этого типа обычно применяются для средних мощностей. При параллельном соединении генерируемое устройством напряжение подается на обмотку возбуждения. При соединении в одну цепь обмоток индуктора и якоря говорят о генераторе с самовозбуждением.
По своим характеристикам они идентичны моторам с независимым возбуждением и обладают следующими особенностями:
- при изменении нагрузки частота вращения практически не трансформируется: замедление составляет не более 8% при переводе от холостого хода к номинальной нагрузке;
- можно с минимальными потерями регулировать частоту вращения, причем в широких пределах — 2-кратно, а у специально сконструированных моторов и 6-кратно.
Индуктор вращающегося двигателя с параллельным возбуждением нельзя отсоединять от цепи якоря, даже если он уже отключен. Это приведет к наведению значительной ЭДС в обмотке возбуждения с последующим выходом мотора из строя. Находящийся рядом персонал может получить травму.
С последовательным возбуждением
Обмотки соединены в цепь последовательно друг другу. Через обмотку возбуждения течет ток якоря. Генераторы этого типа почти не применяются, поскольку процесс самовозбуждения происходит достаточно бурно и устройство не способно обеспечить необходимое большинству потребителей постоянство напряжения. Их используют только в специальных установках.
Схема последовательного возбуждения
Двигатели этого типа широко применяют в качестве тяговых (электровозы, троллейбусы, краны и пр.): по сравнению с аналогами параллельного возбуждения, при нагрузке они дают более высокий момент с одновременным уменьшением скорости вращения. Пусковой момент также высок.
Запуск двигателя с нагрузкой ниже 25% номинальной, а тем более на холостом ходу, недопустим: частота вращения окажется чересчур высокой, и агрегат выйдет из строя.
С параллельно-последовательным (смешанным) возбуждением
Существует два вида схемы:
- основная обмотка индуктора включена параллельно с якорной, вспомогательная — последовательно;
- основная обмотка индуктора включена последовательно с якорной, вспомогательная — параллельно.
Схемы систем возбуждения МПТ
Подключение параллельной обмотки до последовательной называют «коротким шунтом», за последовательной — «длинным шунтом». Генераторы этого типа применяются крайне редко.
Двигатели сочетают в себе достоинства аналогов с параллельным и последовательным возбуждением: способны работать на холостом ходу и при этом развивают значительное тяговое усилие. Но и они сегодня почти не применяются.
Принцип работы УКД (коллекторных электродвигателей универсального применения)
УКД (двигатели универсального использования) применяются в маломощных устройствах и электроинструментах (бытовых, профессиональных) – везде, где требуется высокий момент вращения на хорошей скорости, плавная регулировка числа оборотов и небольшие пусковые токи. По конструкции УКД повторяют синхронные с последовательной схемой электродвигателя.
Принцип работы УКД:
при подаче напряжения на статоре возникает магнитное поле;
исполнение магнитного провода в УКД несколько отличается – здесь они сделаны не цельнолитыми, а сборными во избежание перемагничивания и нагрева токами Фуко;
вспомогательная обмотка ротора (индуктивность) подключается к питанию последовательно, что позволяет настраивать одинаковую направленность магнитных полей статора и ротора в одной фазе;
магнитные поля индуктора и якоря практически полностью синхронны – электродвигатель набирает скорость вращения при высоких нагрузках, что важно для работы многих инструментов (перфораторов, шуруповертов, пылесосов, точильных аппаратов и т. д.).. При включении в цепь электродвигателя регулируемого трансформатора добавляется еще и возможность плавной регулировки его скорости вращения
А вот изменять вектор магнитного поля, если это коллекторный двигатель переменного тока, невозможно ни при каких обстоятельствах
При включении в цепь электродвигателя регулируемого трансформатора добавляется еще и возможность плавной регулировки его скорости вращения. А вот изменять вектор магнитного поля, если это коллекторный двигатель переменного тока, невозможно ни при каких обстоятельствах.
Коллекторный электродвигатель общего назначение имеет много плюсов. Он выдает высокий крутящий/вращающий момент, способен развивать высокую вращательную скорость, при этом весит и места занимает немного. Есть и минусы: графитовые щетки имеют низкую износостойкость (быстро стираются на больших скоростях вращения), снижая ресурс всей сборки.
Классификация
Все трехфазные электродвигатели можно разбить на две группы:
Синхронные. Вращаются со скоростью постоянного магнитного поля. Для повышения мощности, ротор изготовляется по принципу трансформатора – имеет обмотки и сердечник. Напряжение подается через угольные щетки на кольца коллектора (контакты), закрепленного на валу, а уж потом – на катушки ротора.
Асинхронные, с короткозамкнутым ротором. Вращательный импульс идет от возбуждения катушек статора. Короткозамкнутые витки выполнены в виде беличьего колеса. Ротор вращается со скоростью ниже, чем электромагнитное поле статора. Отсюда и его название.
Электромагнитный момент и электромагнитная мощность
При тех же предположениях, что и при определении Eа, электромагнитный момент машины
Если выразить сумму в этом выражении, как и выше, через Bср и Фδ, то в окончательной форме получим
причем постоянный для каждой данной машины коэффициент cм определяется равенством (7).
Сделанные выше замечания о влиянии формы кривой поля, шага обмотки, скоса пазов и сдвига щеток с нейтрали действительны и для данного случая. Момент в системе СИ получается в ньютон-метрах (Н × м). При необходимости выразить момент в килограмм-метрах (кгс × м) надо результат разделить на 9,81.
Отметим, что выражение (8) с учетом равенства (7) можно представить также в виде
(9) |
откуда следует, что момент пропорционален потоку всех полюсов (2p × Фδ) и току всех проводников якоря
Из соотношений (6) и (8) вытекают также два равноценных выражения для электромагнитной мощности:
При выводе формул э. д. с. и момента предполагалось, что проводники обмотки расположены на гладкой поверхности якоря. В действительности проводники находятся в пазах, где магнитная индукция ослаблена. Однако полученные формулы справедливы и в этом случае, так как э. д. с. и момент определяются значением потока, сцепляющегося с секциями обмотки. При расположении проводников в пазах механические усилия действуют главным образом не на проводники обмотки, а на зубцы якоря.
Источник
Как работает электродвигатель
Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.
Если в однородном магнитном поле расположить в вертикальном положении рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.
В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.
На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.
В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.
В быту же постоянные магниты используются в детских игрушках на батарейках.
В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.
Устройство
МПТ состоят из двух частей:
- индуктор: неподвижная часть;
- якорь: вращается внутри индуктора.
В машинах переменного тока индуктор и якорь принято называть, соответственно, статором и ротором. Индуктор создает первичное магнитное поле, воздействующее на якорь с целью навести в нем ЭДС (генератор) либо заставить его вращаться (двигатель).
В маломощных МПТ индуктором иногда выступает постоянный магнит, но чаще с целью добиться однородного магнитного потока применяют электромагнит, то есть систему катушек, создающих при протекании через них постоянного тока магнитное поле обмотка возбуждения (ОВ).
Устройство машины постоянного тока
Каждая катушка намотана на сердечник, вместе они образуют магнитный полюс. Для надлежащего распределения магнитного потока сердечник снабжен специальным наконечником. Основных полюсов может быть несколько. Помимо них применяются добавочные, обеспечивающие безыскровую работу коллектора. Последний представляет собой важный элемент МПТ, его функция будет рассмотрена ниже.
Ярмо индуктора одновременно является станиной МПТ, потому его так обычно и называют. К нему крепятся магнитные полюсы и подшипниковые щиты (вращается вал якоря). В сущности, ярмо — это лишь часть станины, по которой замыкаются магнитные потоки основных и добавочных полюсов.
Якорь представляет собой сердечник с пазами, содержащими уложенный в определенном порядке провод — обмотку. Сердечник закреплен на валу, вращающемся в подшипниках. Здесь же закреплен коллектор.
Коллектор обеспечивает возможность подачи питания на обмотку вращающегося якоря. Он является подвижной частью так называемого скользящего коллекторного контакта, и состоит из нескольких изолированных друг от друга сегментообразных медных пластин, закрепленных в виде цилиндра на валу якоря. Неподвижная часть контакта представлена графитовыми или медно-графитовыми щетками, закрепленными в щеткодержателях. Пружинами они придавливаются к пластинам коллектора.
Техническая версия происхождения названия
По поводу происхождения этого термина, существует две версии, каждая из которых вполне правдоподобна. Согласно первой, наиболее распространенной, брно – аббревиатура, расшифровывающаяся как «блок расключения (или распределения) начал обмоток». Такая расшифровка выглядит вполне приемлемой, так как термином «брно двигателя», обозначается клеммная коробка, установленная на его корпусе, и в ней действительно соединяются определенным образом (расключаются) выводы концов обмоток электродвигателя.
Возможно, что причиной появления столь странного для русского языка названия, стало чрезмерное увлечение аббревиатурами в 20 30 х годах, когда и происходила «электрификация всей страны». Название «ГОЭЛРО», кстати, тоже аббревиатура – «Государственный план электрификации России».
Принцип действия современных электродвигателей
Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.
Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.
Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.
Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.
На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.
Свежие записи:
|
|
Трехфазный асинхронный двигатель с фазным ротором
До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.
Конструкция АДФР
Фазный ротор
Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.
Фазный ротор
Статор АДФР
Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.
Обозначение выводов вторичных обмоток трехфазного АДФР
Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | K1 | K2 |
вторая фаза | L1 | L2 |
третья фаза | M1 | M2 |
Соединение в звезду (число выводов 3 или 4) | ||
первая фаза | K | |
вторая фаза | L | |
третья фаза | M | |
точка звезды (нулевая точка) | Q | |
Соединение в треугольник (число выводов 3) | ||
первый вывод | K | |
второй вывод | L | |
третий вывод | M |
Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода |
---|---|
Соединение звездой (число выводов 3 или 4) | |
первая фаза | Р1 |
вторая фаза | Р2 |
третья фаза | Р3 |
нулевая точка | |
Соединение треугольником (число выводов 3) | |
первый вывод | Р1 |
второй вывод | Р2 |
третий вывод | Р3 |
Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.
Пуск АДФР
Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.
Применяются проволочные и жидкостные реостаты.
Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.
Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .
Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.
При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.
ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.
Побочные следствия реакции якоря
Вследствие явления магнитного насыщения стали результирующее поле под краем полюса, где оно усиливается, не может увеличиться в той же степени, в которой ослабляется под противоположным краем. Поэтому результатом данного эффекта является общее снижение магнитного поля нагруженной машины. В случае генератора ослабление поля уменьшает генерируемое напряжение.
Реакция якоря машины постоянного тока искажает пространственную картину силовых линий поля, следовательно, изменяется положение магнитной нейтрали (МН) — в двухполюсной МПТ она перпендикулярна силовым линиям потока возбуждения и совпадает с геометрической нейтралью ГН. Щетки должны быть размещены на МН, в противном случае это приведет к искрению под ними. Таким образом, в связи с реакцией якоря трудно определить точное положение МН. Впрочем, для этого существуют апробированные на практике способы.
Вторым негативным следствием данного эффекта, которое существенно ухудшает эксплуатационные характеристики машины постоянного тока, является повышение максимального напряжения между рядом расположенными пластинами. Посмотрите еще раз на схему простой петлевой обмотки. Если стороны некоторой ее секции находятся одновременно под краями двух соседних разноименных главных полюсов с увеличенным из-за реакции якоря полем, то индуктируемое в этой секции напряжение, а следовательно, и напряжение между парой соседних пластин коллектора может существенно превысить его величину, когда реакция якоря отсутствует, т. е. при холостом ходе. Причем такое превышение наступает обычно сразу на нескольких участках коллектора, расположенных в зонах увеличенного поля. В результате может возникнуть такое явление, как круговой огонь на коллекторе, которое может его полностью разрушить. Поэтому без специальных конструктивных способов подавления реакции якоря работа машины постоянного тока, имеющей среднюю и большую мощность, практически невозможна.