Высокое диэлектрические потери
Высокие диэлектрические потери приводят к разогреву и тепловому пробою диэлектриков в сильных электрических полях, снижению добротности и избирательности колебательных контуров. В связи с этим стремятся снизить tgS диэлектрических потерь. Они могут быть следующих видов: потери на электропроводность, релаксационные потери ( включая миграционные), резонансные и ионизационные потери.
Высокие диэлектрические потери в высоковольтных кабелях обусловливают подгорание или обуглероживание бумаги, что ведет к образованию проводящего пути через ленты. Перегретый участок может быть ограничен одной или многими точками вдоль кабеля.
Высокие диэлектрические потери, свойственные большинству растворителей, применяемых в полярографии, создают одну из главных экспериментальных трудностей при использовании электролитических ячеек.
Высокие диэлектрические потери приводят к разогреву и тепловому пробою диэлектриков в сильных электрических полях, снижению добротности и избирательности колебательных контуров. В связи с этим стремятся снизить tg б диэлектрических материалов, что возможно, если известна природа диэлектрических потерь.
Сравнительно высокие диэлектрические потери ограничивают применение фторопласта-3 при высоких частотах; при низких же частотах он является — ценным диэлектриком, так как его объемное сопротивление, электрическая прочность и дугостойкость очень высоки.
Электрическая прочность кабелей с изоляцией из полихлорвинилового пластиката в зависимости от времени приложения напряжения ( по Гассер и Хельд. |
Однако, несмотря на более высокие диэлектрические потери, в ряде случаев применение полихлорвинилового пластиката благодаря его негорючести, большей стойкости к режимам коротких замыканий и большей технологичности оказывается целесообразным.
Недостатками обычного стекла являются: относительно высокие диэлектрические потери, резко вырастающие с повышением температуры, а также большая хрупкость, что осложняет обращение со стеклом в условиях производства конденсаторов и мешает использовать его при малой толщине, когда его электрическая прочность особенно велика.
Изоляция от корпуса и между группами выполняется из кабельной бумаги и прессшпана, которые особенно при пропитке хлордифенила-ми, имеют более высокие диэлектрические потери, чем диэлектрик между обкладками Кроме того изоляция от корпуса отфильтровывает при пропитке часть загрязнений из пропитывающего вещества. В конденсаторах с емкостью, обычной для силовых конденсаторов высокого напряжения , ряд стран и фирм ( например, во Франции) величину тангенса угла потерь в изоляции от корпуса нормируют.
Первым двум условиям соответствуют растворители с достаточно высокой диэлектрической постоянной ( в — 20); к сожалению, такие растворители создают высокие диэлектрические потери энергии СВЧ поля в резонаторе спектрометра ЭПР и тем самым усложняют экспериментальные условия для проведения ЭХГ.
Таким образом, связующее должно обладать высокой диэлектрической проницаемостью, в то время как тангенс угла диэлектрических потерь должен быть минимальным, поскольку высокие диэлектрические потери обусловливают увеличение потребляемой мощности и снижение светоотдачи электролюминесцентного слоя.
Диэлектрические потери tg6 корундовых электроизоляционных материалов при 100 — 200 С составляют около 3 — Ю-4, а при 300 С — 4 — 10 — 4-у — и особенно р — А12О3 имеют более высокие диэлектрические потери.
Сквозное соединение пролета в свету при помощи медной ленты шириной 25 4 мм.| Свпрка свинцовой оболочки.| Испытание соединительной муфты давлением. |
Теоретически идеальным материалом для сростка кабелей с вязкой пропиткой для прокладки в блоках являются ленты из ма-нильской или крафт-бумаги, пропитанной маслом. Несмотря на более высокие диэлектрические потери при более высоких рабочих напряжениях лакотканевые ленты с масляной прослойкой благодаря тому, что их легче накладывать на жилы, чаще всего применяются для изоляции жил. Большой опыт многих фирм в течение многих лет с высоковольтными сростками для прокладки в блоках, выполненными лакотканевой лентой, позволяет считать маловероятной возможность развития местных нагревов вследствие более высоких диэлектрических потерь. При более низких напряжениях часто применяется сухая лакотканевая лента с петро-лейным компаундом, изложенным между слоями. Некоторые фирмы пропитывают кабельные сростки, предназначенные для прокладки в блоках, пропиточным маслом, характеристики которого аналогичны характеристикам пропитки, применяемой для кабеля.
Свойства наполненного и ненаполненного сшитого полиэтилена. |
Число потерь в газообразных веществах
Так как у газообразных веществ значение электропроводности очень маленькое, то и число потерь диэлектрических в них мало.
Когда происходит поляризация газообразных молекул, диэлектрических потерь при этом не происходит. В данном случае используется зависимость под названием кривая ионизации. Эта зависимость показывает, что если тангенс δ возрастает вместе с возрастанием напряжения, то это является доказательством того, что в таком случае в изоляции есть включения газа. Если ионизация значительна, то и потери газа тоже, а это может привести к тому, что изоляция разогреется и разрушится.
Поэтому очень важным при изготовлении изоляции является избавление от вкраплений газа. Для того чтобы этого достичь, применяют специальную обработку. Она включает сушку изоляции в состоянии вакуума, после чего все поры заполняет компаунд, находящийся под давлением. Следующим этапом является обкатка. При ионизации возникает озон и окислы азота, что ведет к разрушению органической изоляции. Если эффект ионизации появляется там, где поля неравномерны, то он ведет к существенному снижению коэффициента полезного действия при передаче (это бывает на линии электропередач).
Химические свойства диэлектриков.
Знание химических свойств диэлектриков важно для оценки надежности их в эксплуатации и для разработки технологии. При длительной работе диэлектрики не должны разрушаться с выделением побочных продуктов и не вызывать коррозии соприкасающимися с ними металлов; не реагировать с различными веществами (например, газами, водой, кислотами, щелочами, растворами солей и т.п.)
Стойкость к действию всех этих веществ у различных диэлектриков весьма разнообразна
При длительной работе диэлектрики не должны разрушаться с выделением побочных продуктов и не вызывать коррозии соприкасающимися с ними металлов; не реагировать с различными веществами (например, газами, водой, кислотами, щелочами, растворами солей и т.п.). Стойкость к действию всех этих веществ у различных диэлектриков весьма разнообразна.
Материалы в производстве деталей могут обрабатываться различными химико-технологическими : склеиваться, растворяться в растворителях с образованием лаков и т.д. Растворимость твердых материалов может быть оценена количеством материала, преходящим в раствор за единицу времени с единицы поверхности материала, соприкасающейся с растворителем. Кроме того, нередко оценивают растворимость по тому наибольшему количеству вещества, которое может быть растворено в данном растворе (т.е. по концентрации насыщенного раствора). Легче всего растворяются вещества близкие к растворителю по химической природе и содержащие в молекулах похожие группировки атомов: дипольные вещества легче растворяются в дипольных жидкостях, нейтральные в нейтральных. Так, неполярные или слабополярные углеводороды (парафин, каучук) легко растворяются в жидких углеводородах, например, в бензине; полярные смолы, содержащие гидроксильные группировки (фенолформальдегидные и другие смолы), растворяются в спирте и иных полярных растворителях. Растворимость уменьшается с повышением степени полимеризации, высокомолекулярные вещества с линейной структурой молекул растворяются сравнительно легко, а с пространственной структурой — весьма трудно. При повышении температуры растворимость обычно увеличивается.
Пробой – потеря электрической прочности под действием напряжённости электрического поля – может иметь место как в образцах различных диэлектриков и систем изоляции, так и в электроизоляционных системах любого электротехнического устройства – от мощных генераторов и высоковольтных трансформаторов до любого бытового прибора. Сочетание в системах изоляции материалов, разных по электрической прочности, может приводить к серьёзным осложнениям в эксплуатации самых разнообразных электротехнических устройств, особенно высокого напряжения, где изоляция работает в сильных электрических полях и может возникнуть её пробой.
Причины пробоя бывают различными; не существует по этому единой универсальной теории пробоя. В любой изоляции пробой приводит к образованию в ней канала повышенной проводимости, достаточно высокой, чтобы произошло короткое замыкание в данном электротехническом устройстве, создающее аварийную ситуацию, по существу выводящую это устройство из строя. Однако в этом отношении пробой может проявлять себя в разных системах изоляции по – разному. В твёрдой изоляции, как правило, канал пробоя сохраняет высокую проводимость после выключения, приведшего к пробою напряжения, явление протекает необратимо. В жидких и газообразных диэлектриках вследствие высокой подвижности их частиц электрическое сопротивление канала пробоя восстанавливается вызвавшего его напряжения практически мгновенно.
Диэлектрические потери полимеров
Диэлектрические потери неполярных полимеров при тщательной очистке их от остатков мономеров, катализаторов, стабилизаторов невелики, поэтому они находят применение в качестве высокочастотных диэлектриков. В этом случае часто tgδ =2∙10-4. В полимерах, недостаточно хорошо очищенных от примесей, наряду с потерями сквозной проводимости, как и в полярных диэлектриках, возможны потери на дипольную поляризацию (см. рисунок). Диэлектрические потери полярных полимеров определяются дипольной ориентационной и резонансной поляризациями. Время установления дипольной поляризации с ростом температуры изменяется на несколько порядков, поэтому в зависимости от строения макромолекул полимеров tgδ от температуры и частоты изменяется сложным образом. В температурной зависимости tgδ полярных полимеров может наблюдаться несколько максимумов tgδ — α, β, γ, δ(см. рисунок) тогда, когда у полимера имеются полярные группы, обладающие различной подвижностью (дипольно-групповые потери). При температуре выше температуры стеклования Тс. у полимеров возможна ориентация крупных блоков макромолекулы — сегментов (дипольно-сегментальная поляризация).
Дипольно-сегментальная поляризация приводит к появлению «высокотемпературного» максимума (α). Этот вид поляризации может не наблюдаться у полимеров с очень жесткими макромолекулами. Характерная зависимость tgδ от Т для полимерного диэлектрика с дипольно-групповыми (δ, γ, β) и дипольно-сегментальными потерями (α) показана на рисунке.
Перспектива электромагнитного поля
Для изменяющихся во времени электромагнитных полей электромагнитная энергия обычно рассматривается как волны, распространяющиеся либо через свободное пространство, либо в линии передачи , либо в микрополосковой линии, либо через волновод . Диэлектрики часто используются во всех этих средах для механической поддержки электрических проводников и удержания их на фиксированном расстоянии или для создания барьера между различными давлениями газа, но при этом передача электромагнитной энергии. Уравнения Максвелла решаются для компонентов электрического и магнитного полей распространяющихся волн, которые удовлетворяют граничным условиям геометрии конкретной среды. В таком электромагнитном анализе параметры диэлектрической проницаемости ε , проницаемости μ и проводимости σ представляют свойства среды, в которой распространяются волны. Диэлектрическая проницаемость может иметь действительную и мнимую составляющие (последние не включают σ- эффекты, см. Ниже), такие что
- εзнак равноε′-jε″{\ Displaystyle \ varepsilon = \ varepsilon ‘-j \ varepsilon’ ‘} .
Если мы предположим, что у нас есть волновая функция такая, что
- Eзнак равноEоеjωт{\ displaystyle \ mathbf {E} = \ mathbf {E} _ {o} e ^ {j \ omega t}},
тогда уравнение ротора Максвелла для магнитного поля можно записать как:
- ∇×ЧАСзнак равноjωε′E+(ωε″+σ)E{\ displaystyle \ nabla \ times \ mathbf {H} = j \ omega \ varepsilon ‘\ mathbf {E} + (\ omega \ varepsilon’ ‘+ \ sigma) \ mathbf {E}}
где ε ′ ′ — мнимая составляющая диэлектрической проницаемости, связанная с явлениями связанной зарядовой и дипольной релаксации, которая приводит к потере энергии, неотличимой от потерь из- за проводимости свободного заряда, которая количественно выражается с помощью σ . Компонент ε ‘ представляет собой известную диэлектрическую проницаемость без потерь, определяемую как произведение диэлектрической проницаемости в свободном пространстве и относительной реальной / абсолютной диэлектрической проницаемости, или ε’ = ε ε ‘ r .
Касательная потерь
Затем тангенс угла потерь определяется как отношение (или угол в комплексной плоскости) реакции с потерями на электрическое поле E в уравнении локона и на реакцию без потерь:
- загарδзнак равноωε″+σωε′{\ displaystyle \ tan \ delta = {\ frac {\ omega \ varepsilon » + \ sigma} {\ omega \ varepsilon ‘}}} .
Для диэлектриков с малыми потерями этот угол составляет ≪ 1 и tg δ ≈ δ . После некоторых дальнейших вычислений для получения решения для полей электромагнитной волны оказывается, что мощность спадает с расстоянием распространения z как
-
пзнак равнопое-δkz{\ displaystyle P = P_ {o} e ^ {- \ delta kz}}, куда:
- P o — начальная мощность,
- kзнак равноωμε′знак равно2πλ{\ Displaystyle к = \ омега {\ sqrt {\ mu \ varepsilon ‘}} = {\ tfrac {2 \ pi} {\ lambda}}},
- ω — угловая частота волны, а
- λ — длина волны в диэлектрическом материале.
Часто есть и другие вклады в потери мощности для электромагнитных волн, которые не включаются в это выражение, например, из-за пристенных токов проводников линии передачи или волновода. Кроме того, аналогичный анализ может быть применен к магнитной проницаемости, где
- μзнак равноμ′-jμ″{\ displaystyle \ mu = \ mu ‘-j \ mu’ ‘} ,
с последующим определением тангенса угла магнитных потерь
- загарδмзнак равноμ″μ′{\ displaystyle \ tan \ delta _ {m} = {\ frac {\ mu »} {\ mu ‘}}} .
Электрическая тангенс угла потерь может быть определена аналогичным образом :
- загарδезнак равноε″ε′{\ displaystyle \ tan \ delta _ {e} = {\ frac {\ varepsilon »} {\ varepsilon ‘}}},
при введении эффективной диэлектрической проводимости (см. ).
Виды потерь
В газах
В газообразных веществах электропроводность маленькая и как результат диэлектрические утери также будут незначительными. При поляризации молекул газа ничего не случается. В таком случае применяется так называемая кривая ионизации.
Такая подчиненность свидетельствует о том, что при увеличении напряжения угол также будет повышаться. А это означает, что в изоляции существует включение газа. В случае большой ионизации, потеря газа будет значительной и как результат – нагревание и разрушение изоляции.
Поэтому изготавливая изоляцию очень важно учитывать тот факт, что вкрапления газа должны отсутствовать. Для этого используется особенная обработка. Суть ее заключается в следующем: в вакууме происходит сушка изоляции
Затем поры наполняются компаундом, который находится под напором и потом происходит обкатка
Суть ее заключается в следующем: в вакууме происходит сушка изоляции. Затем поры наполняются компаундом, который находится под напором и потом происходит обкатка.
В результате ионизации появляются окислы азота и озона, которые разрушают изоляцию. В моменты, когда эффект ионизации возникает на участке неравномерных полей, это при передаче приводит к снижению коэффициента полезного действия.
В твердых веществах
Твердый диэлектрик обладает определенными характеристиками, такими как состав, структура и поляризация, которые приводят к возникновению диэлектрических потерь. Например, в сере, парафине или полистироле они отсутствуют, поэтому данные вещества широко используют как высокочастотный диэлектрик.
Кварц, соль и слюда обладают сквозной электропроводностью, поэтому они характеризуются незначительной величиной данных потерь.
Диэлектрические потери не зависят от частоты (а), будут уменьшаться вместе с частотой поля по гиперболическому закону. Зато с температурой они зависят напрямую по экспоненциальному закону (б).
Кристаллический диэлектрик, такой как керамика или мрамор обладает характерным показателем этого значения. Это объясняется тем, что в их составе есть примеси полупроводников. Такой материал обладает отличительным свойством: диэлектрические потери напрямую связаны с окружающей средой и ее условиями. Поэтому в зависимости от смены факторов, которые окружают диэлектрик, величина одного материала может изменяться.
В жидкостях
В этом случае потери напрямую связаны с составом материала. Если в жидкостях отсутствуют какие-либо примеси, то она будет нейтральна и утери будут стремиться к нулю, так как электропроводность низкая.
Жидкости с полярностью или с наличием примесей используют для определенных технических целей, так как диэлектрические утери у них будут гораздо выше. Это объясняется тем, что такие жидкости обладают своими особенными свойствами, например, вязкость. А так как их устанавливает дипольная поляризация, то эти жидкости называют дипольными. При возрастании вязкости диэлектрические потери возрастают.
Помимо этого жидкости обладают определенной зависимостью потерь от температуры. Когда температурный режим увеличивается тангенс угла также увеличивается до максимального показателя. Затем опускается до минимального показателя и снова возрастает. Это объясняется тем, что под воздействием температуры изменяется электропроводность. No tags for this post.
Электрическая проницаемость
Электрическая проницаемость является величиной, характеризующей емкость диэлектрика, помещенного между обкладками конденсатора. Как известно, емкость плоского конденсатора зависит от величины площади обкладок (чем больше площадь обкладок, тем больше емкость), расстояния между обкладками или толщины диэлектрика (чем толще диэлектрик, тем меньше емкость), а также от материала диэлектрика, характеристикой которого служит электрическая проницаемость.
Численно электрическая проницаемость равна отношению емкости конденсатора с каким-либо диэлектриком такого же воздушного конденсатора. Для создания компактных конденсаторов необходимо применять диэлектрики с высокой электрической проницаемостью. Электрическая проницаемость большинства диэлектриков составляет несколько единиц.
В технике получены диэлектрики с высокой и со сверхвысокой электрической проницаемостью. Основная их часть – рутил (двуокись титана).
Рисунок 1. Электрическая проницаемость среды
Особенности электроизоляционных материалов
Рассмотренные виды пробоя твердых диэлектриков нашли свое применение в современной электротехнике.
Среди жидких и полужидких диэлектрических материалов, используемых в настоящее время в технике, интерес представляют трансформаторное и конденсаторное масла, а также синтетические жидкости: совтол, совол.
Минеральные масла получают в результате фракционной перегонки сырой нефти. Между отдельными их видами существуют различия по вязкости, электрическим характеристикам.
Например, кабельное и конденсаторное масла имеют высокую степень очистки, поэтому обладают прекрасными диэлектрическими характеристиками. Негорючими синтетическими жидкостями являются совтол и совол. Для получения первой проводят реакцию хлорирования кристаллического дифенила
Эта прозрачная вязкая жидкость обладает токсичностью, способна раздражать слизистую оболочку, поэтому при проведении работ с таким диэлектриком необходимо тщательно соблюдать меры предосторожности
Совтол — это смесь трихлорбензола и совола, поэтому для данного электроизоляционного материала характерно более низкое значение вязкости.
Обе синтетические жидкости применяют для пропитки современных бумажных конденсаторов, установленных в промышленных устройствах переменного и постоянного тока.
Органические высокополимерные диэлектрические материалы состоят из множества молекул мономеров. Высокими диэлектрическими характеристиками обладает янтарь, натуральный каучук.
У воскообразных материалов, например церезина и парафина, четко выражена температура плавления. Такие диэлектрики имеют поликристаллическое строение.
В современной электротехнике востребованы пластмассы, являющиеся композиционными материалами. В их составе есть полимеры, смолы, красители, стабилизирующие вещества, а также пластифицирующие компоненты. В зависимости от отношения к нагреванию, их подразделяют на термопластичные и термореактивные материалы.
Для работ в воздушной среде применяют электрокартоны, у которых более плотная структура в сравнении с обычным материалом.
Среди слоистых электроизоляционных материалов, имеющих диэлектрические характеристики, выделим текстолит, гетинакс, стеклотекстолит. Эти слоистые пластмассы, в которых в качестве связующего вещества выступают кремнийорганические или резольные смолы, являются прекрасными диэлектриками.
Виды диэлектрических потерь
Потери на электропроводность
Протекание сквозного тока через диэлектрик, как в постоянном, так и в переменном электрическом поле приводит к диэлектрическим потерям на электропроводность. Потери сквозной электропроводности будут единственным видом потерь в однородном неполярном диэлектрике, для которого можно использовать простейшую параллельную схему замещения. Для такой схемы замещения по определению
tgδ=Ia/Ic=U/R
1/UwC=1/RwC,
т.е. tgδ будет обратно пропорционален частоте. Потери на электропроводность будут наблюдаться также и в полярных диэлектриках. Так как tgδ диэлектриков пропорционален активной проводимости tgδ = γa/ γc, то ясно, что tgδ будет следовать за изменением γa, которая увеличивается экспоненциально с увеличением температуры.
Для ионных кристаллов можно получить другое выражение для tgδ:
tgδ=(1.8∙1010∙γo/ f) e∙Wa/kT .
Видим, что в последнем выражении предъэкспоненциальный множитель tgδ зависит обратно пропорционально от частоты поля и диэлектрической проницаемости материала.
Значения tgδ неполярных полимеров (полиэтилена, политетрафторэтилена) ничтожно малы и лежат в диапазоне (2-5) 10-4. На высоких частотах tgδ, обусловленный сквозным током, менее 10-4. Следует иметь в виду, что tgδ конденсатора с неполярным диэлектриком с ростом частоты уменьшается не беспредельно, а начиная с некоторой частоты начинает линейно возрастать в соответствии с выражением, полученным из последовательной схемы замещения
tgδм= r∙ω∙Cs,
где r, Cs — сопротивление обкладок и емкость последовательной схемы замещения конденсатора Рост составляющей tgδм обусловлен увеличением с ростом частоты потерь в металлических (проводящих) частях. Следовательно, на общей зависимости tgδ конденсатора с диэлектриком от частоты при некотором значении частоты должен иметь место минимум. В случае конденсатора с полярным диэлектриком, начиная с некоторой частоты, потери в обкладках также будут возрастать линейно
Релаксационные потери
Основные причины, вызывающие протекание через диэлектрик абсорбционных токов, приводящих к релаксационным потерям, перечислены в разделе об электропроводности диэлектриков (ток абсорбции). Отметим, что потери релаксационного характера могут наблюдаться не только в полярных диэлектриках, но и в не полярных, например, при наличии пористой или слоистой структуры, когда становится возможна ионизация газовых включений, накопление объемных зарядов и др.
Появление абсорбционных токов в полярных диэлектриках под действием внешнего поля, наряду с неоднородностью, обусловлено, главным образом, ориентацией полярных молекул.
В вязких жидкостях полярные молекулы — диполи, ориентируясь во внешнем поле, преодолевают силы внутреннего трения (вязкость) в результате чего часть электрической энергии превращается в тепло. В твердых диэлектриках релаксационные потери вызываются как процессами установления дипольной поляризации, так и поляризацией, определяемой слабосвязанными ионами.
Какие бывают
Более подробно остановимся на видах диэлектрических потерь, которые различаются между собой.
Диэлектрические утери газов веществ
Газообразные обладают низкой электрической проводимостью. По этой причине потери в диэлектрике в этом веществе невелико. В процессе поляризаций газовых молекул ничего не произойдёт. В таких ситуациях применяют кривую ионизации.
При изготовлении изоляции необходимо обращать внимание на то, что в изоляции не должно быть газовых вкраплений. Чтобы сделать это, используют специальные способы обработки
Благодаря новым способам обработки изоляцию можно высушивать в вакууме. После этого изоляция обкатывается на специальных устройствах, что и делает её наиболее надёжной.
Схемы на все случаи жизни
При подключении к конденсатору источника электрической энергии часть ее теряется в виде тепла (из-за сквозной проводимости, расхода энергии на смещение зарядов при поляризации, потерь энергии в выводах и электродах, потерь на ионизацию воздушных включений в диэлектрике и др.). Если сравнить процесс накопления заряда конденсатора с накоплением потенциальной энергии механической пружиной при ее сжатии, то потери энергии в конденсаторе следует сравнить с потерями энергии в пружине, выделяющимися также в виде тепла.
Величина потерь в конденсаторе оценивается тангенсом угла потерь δ, дополняющего до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Тангенс угла потерь можно выразить и как отношение активной мощности потерь конденсатора к его реактивной мощности при синусоидальном напряжении. Потери в конденсаторе в первую очередь определяются структурой его диэлектрика и наличием различных дефектов (инородных включений, повышенной проводимости и др.). Наименьшие потери имеют вакуумные конденсаторы ( tgδ≤10-5), наибольшие — алюминиевые электролитические (tgδ=0.1-0.3).
В некоторых случаях определяющим в величине tgδ является сопротивление металлических частей конденсатора, особенно на высоких частотах из-за вытеснения тока к поверхности проводника (скин-эффект), а для электролитических конденсаторов — сопротивление электролита.
Иногда для оценки потерь в конденсаторе пользуются величиной, обратной tgδ, называемой добротностью или коэффициентом мощности конденсатора.
Измерение тангенса угла потерь из-за сложной природы этой величины требует особой тщательности. Удлинительные провода, плохие контакты, наличие паразитных электрических полей могут значительно исказить результаты измерений. Тангенс угла потерь конденсаторов должен измеряться при указанных в ТУ значениях напряжения и частоты измерительным прибором с указанной в технических условиях на конденсаторы погрешностью.
Тангенс угла потерь электролитических конденсаторов измеряют при указанной в ТУ величине поляризующего напряжения постоянного тока.
Измерение емкости должно производиться при указанных в действующих ТУ величинах напряжения и частоты измерительными приборами с погрешностью в 3—5 раз меньшей, чем допустимое отклонение емкости от номинала. Конденсатор для измерения подключается непосредственно к прибору с помощью предусмотренных у прибора приспособлений — колодок с контактными губками или зажимов с медными проводами.
Конструкция колодок или длина проводов должны быть такими, чтобы вносимая дополнительная погрешность не превышала 10% от допускаемого отклонения емкости. Вывод конденсатора, соединенный с корпусом или с внешним электродом (для керамических конденсаторов), подключают к заземленной клемме измерительного прибора или к клемме с меньшим потенциалом относительно земли.
Измерение последовательной емкости электролитических конденсаторов производят методом моста при поляризующем напряжении постоянного тока. Значения поляризующих напряжений указаны в ТУ.
При оценке отклонения емкости от номинального значения следует учитывать, что фактическое отклонение может отличаться от измеренного на погрешность прибора.
При оценке изменения емкости в результате воздействия на конденсатор различных факторов (температуры, влажности, вибрации и др.) следует учитывать, что фактическое изменение емкости может отличаться от измеренного на удвоенную погрешность прибора.
Список использованной литературы
- Элементы радиоэлектронной аппаратуры. Электрические конденсаторы постоянной ёмкости. В.Н. Гусев, В.Ф.Смирнов. — М.: Советское радио, 1968.
Перспектива дискретной схемы
Для каждого дискретного компонента электрической цепи конденсатор обычно состоит из диэлектрика, помещенного между проводниками. Элементная модель сосредоточенного конденсатора включает в себя последовательно без потерь идеального конденсатора с резистором называется эквивалентное последовательное сопротивление (ESR), как показан на рисунке , приведенном ниже. ESR представляет собой потери в конденсаторе. В конденсаторе с малыми потерями ESR очень мало (проводимость низкая, что приводит к высокому удельному сопротивлению), а в конденсаторе с потерями ESR может быть большим
Обратите внимание, что ESR — это не просто сопротивление, которое можно измерить на конденсаторе омметром. ESR — это производная величина, представляющая потери из-за как электронов проводимости диэлектрика, так и явления связанной дипольной релаксации, упомянутого выше
В диэлектрике один из электронов проводимости или обычно доминируют над потерями в конкретном диэлектрике и способе изготовления. В случае, когда электроны проводимости являются доминирующими потерями, тогда
- ESрзнак равноσε′ω2C{\ displaystyle \ mathrm {ESR} = {\ frac {\ sigma} {\ varepsilon ‘\ omega ^ {2} C}}}
где C — емкость без потерь.
Реальный конденсатор имеет модель с сосредоточенными элементами идеального конденсатора без потерь, включенного последовательно с эквивалентным последовательным сопротивлением (ESR). Тангенс угла потерь определяется углом между вектором импеданса конденсатора и отрицательной реактивной осью.
При представлении параметров электрической цепи в виде векторов в комплексной плоскости, известной как вектор , тангенс угла потерь конденсатора равен тангенсу угла между вектором импеданса конденсатора и отрицательной реактивной осью, как показано на диаграмме рядом. Тогда тангенс угла потерь равен
- загарδзнак равноESр|Иксc|знак равноωC⋅ESрзнак равноσε′ω{\ displaystyle \ tan \ delta = {\ frac {\ mathrm {ESR}} {| X_ {c} |}} = \ omega C \ cdot \ mathrm {ESR} = {\ frac {\ sigma} {\ varepsilon ‘ \ omega}}} .
Поскольку через ESR и X c протекает один и тот же переменный ток , тангенс угла потерь также является отношением потерь резистивной мощности в ESR к реактивной мощности, колеблющейся в конденсаторе. По этой причине тангенс угла потерь конденсатора иногда указывается как его коэффициент рассеяния или величина, обратная его добротности Q , как показано ниже.
- загарδзнак равноDFзнак равно1Q{\ displaystyle \ tan \ delta = \ mathrm {DF} = {\ frac {1} {Q}}} .
Диэлектрические утери твёрдых веществ
У твёрдых веществ есть особый ряд характеристик. Например, они различаются по составу, структуре и поляризации, благодаря которым и возникают диэлектрические потери. Для диэлектриков, обладающих надёжностью и хорошим качествам, используют:
- Серу.
- Парафин.
- Полистирол.
Существуют и диэлектрики со сквозной проводимостью электричества. К ним относят:
- Кварц.
- Соль.
- Слюду.
Керамические и мраморные диэлектрики, будучи кристаллическими, являются характерными примерами данных значений. В них есть примесь полупроводников.
Они имеют отличительные свойства: потери диэлектрики будут зависеть от условий окружающей среды. Значения величины могут измениться от влияния окружающих факторов.
Что способствует повышению диэлектрических потерь
Норма диэлектрических потерь прописывается в инструкции к определенному прибору. Есть факторы, вызывающие колебания и отклонения от нормы (обычно это повышение). Различают несколько типов:
- за чет электропроводности сквозного типа;
- ионизирующие;
- резонансные;
- обусловленные поляризацией.
Если частотный и температурный график зависимости понятен интуитивно, то дело обстоит иначе с другими факторами, приводящими к негативному явлению
Обратите внимание, что нагревание трансформаторного масла приводит к более интенсивному смещению, иногда даже смещаются заряды диэлектрика. При стабильных низких показателях температуры вязкость не меняется, следовательно, нет смещения диполей
А вот увеличение частоты обуславливает улучшенную проводимость. Показатели тока емкостного могут смещать диполи, при больших показателях уменьшается трение. Рост угла вызывает и проявление влаги в любом виде (это может быть и газообразное состояние). Приводит к повышению показателя ионизация, при этом увеличивается рост напряжения.