Бифилярная катушка и ее использование

Генератор свободной энергии — «Назад в будущее»

Бифилярная катушка и ее использование

В середине семидесятых в журнале «Наука и жизнь» промелькнула интересная статья, где один изобретатель, изучающий передачу электрической энергии без проводов, изобрёл генератор электрической энергии из двух проволок. Проволоки эти были необычными. Каждая проволока начиналась медью, а заканчивалась алюминием. Длина проволок, судя по фотографии, была примерно 70 см. Изобретатель пальцами руки держал лампочку накаливания 2,5 вольта, которая ярко светилась. Проволоки висели в воздухе и никуда не были подсоединены!

Проведите эксперимент:

На алюминиевую фольгу положите салфетку, сверху медную спираль, смочите салфетку водой и подсоедините тестер. Показания тестера будут выше 0,5 вольта. Тестер показывает больше, чем разность потенциалов металлов, иногда показания превышают 1 вольт.

Наше объяснение этого эффекта:

Происходит стекание зарядов от минуса (алюминий) к плюсу (медь), при этом свободные нейтроны в воде приобретают минусовой потенциал и количество электронов увеличивается — это объясняет увеличение напряжения.

Где применяются катушки Теслы

Сами катушки или их действие применяется в некоторых сферах жизни. Кроме комнат, описанных выше, созданные молнии высокого напряжения могут применяться в красочных лампах, которые можно трогать рукой, и разряд будет стремиться к ней.

Интересные и малоизвестные факты о молниях

Созданные молнии могут показать, где есть повреждение вакуумной системы — они всегда стремятся к месту нарушения герметичности. Эффект находит место даже в косметологии. Дело в том, что параметры тока в катушке Теслы относительно безопасны для человека и лишь ходят по поверхности кожи, слега ”пробирая” ее изнутри. Приборы, основанные на таком эффекте, позволяют стимулировать и тонизировать кожу, решая некоторые проблемы с венами, морщинами и другими неприятными изменениями. Но пользоваться такими приборами должен профессионал, так как полностью безопасными назвать их нельзя.

Бифилярная катушка и ее использование

Катушки Теслы применяются даже в косметологии.

Изготовление индукционной плиты своими руками

Плата была изготовлена на заказ. Вы же можете собрать схему навесным монтажем, либо на универсальной плате.

Устанавливаем все детали на плату начиная с самых маленьких.

И заканчивая индуктивностью.

Запаиваем и обрезаем вывода.

Припаиваем провода питания, выходные транзисторы устанавливаем на небольшие радиаторы.

Подключаем излучающую катушку к выходу платы.

Подаем питание обязательно от мощного блока. При установке на катушку металлической посуды потребляемый ток должен существенно возрасти.

Через 10 минут вода закипит.

Мощность потребляемая плитой составляет 180 Вт, которая складывается из: 10 А ток потребления при 18 В. Эта мощность имеет более высокий КПД по сравнению с нагревательными элементами, так как легко концентрируется в нужном месте и не расходуется на теплопотери.

Почему никто не развивает катушку Теслы

Сказать, что кто-то всерьез занимается вопросом развития технологии, нельзя. Может быть она не так привлекательна в промышленном применении, а может быть она нужна только военным. Точного ответа на этот вопрос нет, но именно военные много работают в этом направлении.

Все просто! Если как следует ”раскочегарить” катушку Теслы, она может спалить всю электронику на очень большом расстоянии. Даже простейшие макеты, которые делаются в домашних условиях, могут вывести из строя домашние бытовые приборы, что уже говорит о действительно мощных установках.

Бифилярная катушка и ее использование

Причин, по которым катушки Тесла развиваются недостаточно эффективно много — от недостаточно востребованности до секретности и опасности.

Реальное применение катушки Теслы находят только в шоу, которые основаны на электрических спецэффектах. Считается, что их использование безопасно для человека, но при этом оно позволяет создавать красочные фиолетовые молнии, которые можно видеть буквально перед собой. Это очень эффектно и заставляет многих детей увлечься наукой.

Конфигурации трансформатора

За годы, прошедшие после изобретения трансформатора, появилось множество его конфигураций.

  • SGTC – катушка имеет классическое устройство и работает на искровом разряде. Позволяет получить длинный стример без добавочных эффектов. Элементом коммутации выступает разрядник, выполненный из двух кусков толстого проводника. Когда речь идет про мощные устройства, то применяют вращающиеся разрядники и электродвигатели.
  • VTTC – катушка Тесла, созданная на базе электронной лампы, выступающей коммутирующим элементов. Может работать в постоянном режиме, выдавая длинные, толстые разряды. Стример имеет форму факела.
  • SSTC – ключом является полупроводниковый элемент – мощный транзистор. Может работать без перерывов, порождая стимеры любой формы и играя музыку.
  • DRSSTC – имеет два контура резонанса. Ключами являются полупроводниковые компоненты. Очень сложен в управлении, но дает поистине впечатляющие эффекты.

Тесла и Тунгусский метеорит

Про Тунгусский метеорит сказано более чем много, и я сейчас не буду подробно пересказывать историю этого происшествия. Скажу только, что не все верят в метеорит, природное явление, крушение инопланетного корабля, столкновение с Землей миниатюрной черной дыры (есть и такая версия) или испытание какого-то оружия. Многие уверены, что катастрофа была связана именно с попыткой Николы Теслы передать энергию на большое расстояние.

Лично я к этой версии отношусь довольно скептически, но если ученый смог создать прибор, который мог сотворить такое, то только представьте, какой потенциал имели созданные им технологии, которые мы сейчас используем для развлечения.

Бифилярная катушка и ее использование

Катушка Теслы несет в себе не только красоту, но и опасность.

Прямых доказательств или явных опровержений виновности Николы Теслы во взрыве в Сибири нет. Поэтому оставим версию конспирологами или простым людям для развития фантазии.

Что вызывает статическое электричество.

Что такое катушка Теслы

Сразу скажу, что в описании этого относительно простого прибора есть несколько довольно сложных для неподготовленного человека слов. Они относятся к электрике, и большинство даже если слышало их, то не сразу поймет, что они означают. Поэтому я дам два описания. Одно из них будет обычным, с небольшим уклоном в техническую сторону, в а второе, что называется, на пальцах.

10 доказательств того, что Никола Тесла был богом науки.

Итак, если говорить по науке, то катушка Теслы (или трансформатор Теслы) — это устройство, изобретенное Николой Теслой. Поэтому логично, что ему дали его имя. Более того, на него даже есть патент на имя великого физика. Он выдан 22 сентября 1896 года. В патенте изобретение называется ”Аппарат для производства электрических токов высокой частоты и потенциала”. На самом деле из этой заявки все должно быть понятно. Это прибор, который является резонансным трансформатором, производящим высокое напряжение высокой частоты.

Популярные статьи  Коэффициент трансформации

Бифилярная катушка и ее использование

Гениальный изобретатель не просто придумал катушку своего имени, но и запатентовал ее.

В основе работы приборы лежат резонансные стоячие электромагнитные волны. Сейчас поймете, как это!

У прибора есть две проводниковые катушки — первичная и вторичная. В первичной обмотке как правило небольшое количество витков. Вместе с ней идут конденсатор и искровой промежуток. Эта часть прибора обязательно должна быть заземлена.

Вторичная обмотка — это прямая катушка провода. Когда частоты колебания колебательного контура первичной обмотки совпадают с собственными колебаниями стоячих волн вторичной обмотки возникает резонанс и стоячая электромагнитная волна. В итоге между концами катушки появляется высокое переменное напряжение.

Бифилярная катушка и ее использование

Упрощенно катушка Теслы выглядит так.

На самом деле все довольно просто, если понимать принцип действия законов физики, на которых основана работа прибора, но вот, как и обещал, более простое объяснение.

Конфигурации трансформатора

За годы, прошедшие после изобретения трансформатора, появилось множество его конфигураций.

  • SGTC – катушка имеет классическое устройство и работает на искровом разряде. Позволяет получить длинный стример без добавочных эффектов. Элементом коммутации выступает разрядник, выполненный из двух кусков толстого проводника. Когда речь идет про мощные устройства, то применяют вращающиеся разрядники и электродвигатели.
  • VTTC – катушка Тесла, созданная на базе электронной лампы, выступающей коммутирующим элементов. Может работать в постоянном режиме, выдавая длинные, толстые разряды. Стример имеет форму факела.
  • SSTC – ключом является полупроводниковый элемент – мощный транзистор. Может работать без перерывов, порождая стимеры любой формы и играя музыку.
  • DRSSTC – имеет два контура резонанса. Ключами являются полупроводниковые компоненты. Очень сложен в управлении, но дает поистине впечатляющие эффекты.

Почему никто не развивает катушку Теслы

Сказать, что кто-то всерьез занимается вопросом развития технологии, нельзя. Может быть она не так привлекательна в промышленном применении, а может быть она нужна только военным. Точного ответа на этот вопрос нет, но именно военные много работают в этом направлении.

Все просто! Если как следует ”раскочегарить” катушку Теслы, она может спалить всю электронику на очень большом расстоянии. Даже простейшие макеты, которые делаются в домашних условиях, могут вывести из строя домашние бытовые приборы, что уже говорит о действительно мощных установках.

Бифилярная катушка и ее использование

Причин, по которым катушки Тесла развиваются недостаточно эффективно много — от недостаточно востребованности до секретности и опасности.

Реальное применение катушки Теслы находят только в шоу, которые основаны на электрических спецэффектах. Считается, что их использование безопасно для человека, но при этом оно позволяет создавать красочные фиолетовые молнии, которые можно видеть буквально перед собой. Это очень эффектно и заставляет многих детей увлечься наукой.

Подобие с качелями

Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.

Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.

Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.

Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же трансформатор.

Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.

Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.

Чем уникальна катушка Тесла

Физик, применив устройство, при входной частоте в пару сотен килогерц способен получить напряжение размеров в 15 миллионов вольт и более. Собрать его можно даже дома, ведь все необходимые элементы доступны для покупки любому, достаточно посетить строительный гипермаркет и магазин электроники.

Получить можно следующие эффекты как вместе, так и по отдельности:

  1. Дугообразный разряд, характерный при использовании ламповых трансформаторов.
  2. Спарк или искры, похожий на пучок ярких веточек, которые изменяются или исчезают. Выходит из прибора на землю.
  3. Стример – тонкий направленный в воздух светящийся поток, в составе которого есть свободные электроны и атомы газа.
  4. Коронный разряд – очень красивое голубоватое свечение воздушных ионов, находящихся в электрическом поле. Образуется вокруг устройства.

Катушка Тесла и теории эфира

В 1896 году ученый получил патент на свое изобретение – резонансный трансформатор. Он образует высокочастнотное повышенное напряжение, то есть ток высокого потенциала.

История создания начинается с опытов Тесла по доказательству существования эфира. Эфир представляет собой физическую среду, некое поле или вещество, заполняющее просторы Вселенной. Именно он, согласно идеям Тесла, отвечал за распространение гравитационного и элетромагнитного взаимодействия. До появления теории относительности концепция эфира была распространена в физике, а после этого перестала разрабатываться.

Ученый хотел использовать эфир как источник энергии, что позволило бы отказаться от проводов для передачи и распространять электричество по всему миру. Он хотел установить две гигантские катушки на северном и южном полюсах Земли. Глубоко после смерти Тесла это направление не разрабатывалось, его считали слишком уж странным ученым, а идеи – провокационными. Но, скорее всего, причина была в нежелании физика учитывать экономическую сторону при разработке идей, не рекламировал выгоду для корпораций от их реализации.

Архивы физика были частично утеряны после его смерти, а наступление эры вакуумных изобретений похоронило мысль о двух катушках на полюсах. Неизвестно, удалось ли ему получить или же доказать возможность создания бесконечного источника энергии.

Как работает бифилярная катушка Теслы

  • Главная
  • Cхемы
  • Программы
  • Библиотека
  • Форум
  • Справочный лист
  • Советы
  • Обзоры
  • Это интересно
  • В начало
  • Назад
  • 1
  • 2
  • 3
  • 4
  • 5
  • Вперёд
  • В конец
  • 1
  • 2
  • 3
  • 4
  • 5
  • Rrenovatio
  • Автор темы —>

  • Не в сети
  • Живу я здесь
  • Сообщений: 2505
  • Репутация: 23
  • Спасибо получено: 78

2856 витков да при ёмкости в 200 мкф. на 50 гц.

такое может быть?

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Rrenovatio
  • Автор темы —>

  • Не в сети
  • Живу я здесь
  • Сообщений: 2505
  • Репутация: 23
  • Спасибо получено: 78

Вверху скрин не катит, там катушка без сердечника!

а здесь рассчитала с сердечником!

но есть НО! рассчитала обмотку на кольцо, то есть через внутреннее отверстие, 387 витков — а мне нужно по поверхности, вот как их пересчитать, программ много а той что считает на ферритовый стержень нет.

Популярные статьи  Антенна для модема

я так понимаю нужно мотать пока не достигну данной индукции?

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Aleksanders
  • —>

  • Не в сети
  • Живу я здесь
  • Сообщений: 616
  • Репутация: 1
  • Спасибо получено: 11

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Николай Петрович —>
  • Не в сети
  • Живу я здесь
  • Сообщений: 1121
  • Репутация: 9
  • Спасибо получено: 46

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Rrenovatio
  • Автор темы —>

  • Не в сети
  • Живу я здесь
  • Сообщений: 2505
  • Репутация: 23
  • Спасибо получено: 78

Aleksanders дружище, антенна — сама земля. Делается контур заземления, но применяется в качестве антенны! Хочу его к середине бифилярной индукционной катушки подключить.

Да Петрович сложновато будет! Понимаю, но нужно попробовать. Долгими зимними вечерами всё равно делать не чего, почему бы и нет. У меня постоянный (НЕ ЭЛЕКТРОЛИТ) конденсатор есть на 230 мкф. вольт на 400, голубенький такой:

вот его и поставлю. Нужно будет правда намоточный станочек сотворить на коленке, с моторчиком и чтоб витки считал. неохота ручками то. посмотрим что получится! Бифиляр буду мотать. «Если теперь проводник -В- намотан параллельно проводнику -А- и изолирован от него, а конец -А- будет соединён с началом проводника -В-, тогда длина собранных вместе проводников будет такая же и число витков тоже самое (1000). И тогда разность потенциалов между любыми двумя точками проводников -А- и -В- будет 50 В, а т.к. ёмкостный эффект пропорционален квадрату этой разности, то энергия скопившаяся в катушке будет теперь в 250000 раз больше ! » — это с Тесла патента. Посмотрю что получится.

Устройство бифиляра

Бифилярная катушка Тесла изготовлена в виде плоской спирали или соленоида. Бифиляр, в отличии от обычной катушки, имеет 4 выхода. Так как катушка наматывается двумя проводами, то получаются 2 выхода в середине катушки и 2 с краю. В отличии от обычной катушки, имеющий всего 2 выхода — один изнутри, а другой снаружи.

Намотка может быть последовательной и параллельной. Соединение проводов в катушке также возможно как последовательное, так и параллельное. Отсюда возникает 4 возможные варианта использования катушек:

  • Намотка проводов последовательная
  • Намотка проводов параллельная
  • Намотка последовательная
  • Намотка параллельная

В бифиляре Теслы соединение производится с началом нечетных витков с концом чётных. Это позволяет сильно увеличить добротность и плотность намотки. Такое устройство бифиляра Тесла определяет его уникальные свойства.

Иногда это устройство путают с трансформатором Тесла, Но трансформатор Тесла, который ещё называют катушкой Тесла, не изготавливается методом бифиляра. Подробнее о нём можно прочитать в этой статье.

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Чем уникальна катушка Тесла

Физик, применив устройство, при входной частоте в пару сотен килогерц способен получить напряжение размеров в 15 миллионов вольт и более. Собрать его можно даже дома, ведь все необходимые элементы доступны для покупки любому, достаточно посетить строительный гипермаркет и магазин электроники.

Получить можно следующие эффекты как вместе, так и по отдельности:

  1. Дугообразный разряд, характерный при использовании ламповых трансформаторов.
  2. Спарк или искры, похожий на пучок ярких веточек, которые изменяются или исчезают. Выходит из прибора на землю.
  3. Стример – тонкий направленный в воздух светящийся поток, в составе которого есть свободные электроны и атомы газа.
  4. Коронный разряд – очень красивое голубоватое свечение воздушных ионов, находящихся в электрическом поле. Образуется вокруг устройства.

Подобие с качелями

Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.

Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.

Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.

Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же трансформатор .

Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.

Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.

Конструкция катушки индуктивности

Вокруг прямолинейного проводника с постоянным током создается круговое магнитное поле. Линии напряженности напоминают спираль. Некто догадался свернуть провод кольцом, чтобы вклад элементарных сегментов сложился в центре. В результате внутри конструкции магнитное поле намного выше, нежели снаружи. Линии визуально наблюдаем на железных опилках. На Ютуб множество роликов, где через индуктивность пропускают ток, демонстрируя упорядоченную ориентацию металлической пыли в момент замыкания контактов. Конструкция способна запасать впрок магнитное поле подобно конденсатору, накапливающему заряд. Катушками называют только индуктивности, содержащие намотку лакированного провода. В микрополосковой технологии напыляемые для запасания магнитного поля элементы логично именовать индуктивностями.

Если в катушке, совсем как в той, что используют швеи, несколько витков провода расположить один за другим бок о бок так, чтобы ось была общей, линии напряженности магнитного поля суммируются. Простейшая индуктивность, способная накапливать энергию магнитного поля. При резком пропадании напряжения образуется явление обратной-ЭДС широко известное технике. Выступает причиной искрения коллекторных двигателей. Используется лакированный (с лаковой изоляцией) медный провод нужного сечения. Количество витков, форма сердечника определяются предварительно расчетами или по имеющемуся образцу.

Бифилярные катушки сегодня широко используются. Что касается обратной ЭДС, служит причиной розжига разрядных ламп (дневного света). Вернемся к конструкции. В первом электромагните проволока оголенная, современные катушки индуктивности наматываются лакированным. Тонкая изоляция при необходимости может быть легко снята (например, токсичной муравьиной кислотой), в исходном состоянии надежно защищает конструкцию против короткого замыкания.

Внутри катушки находится сердечник из ферромагнитного материала. Форма не важна, сечение лучше брать круглым. На высоких частотах магнитный поток (см. Преобразователь напряжения) выходит на поверхность сердечника, смысл применения ферромагнитных сплавов пропадает, иногда используется латунь (даже композитные материалы, диэлектрики). Снижает индуктивность, на высоких частотах запасаемая за период мощность невелика. Трюк проходит. У многих возникает вопрос – зачем нужен сердечник?

Популярные статьи  Что такое защита от тока короткого замыкания?

Сердечник катушки индуктивности выступает опорой, долговечным каркасом, усиливая магнитное поле. Индукция связана с напряженностью поля через постоянную магнитной проницаемости среды. У ферромагнитных материалов параметр поистине велик. В тысячи раз больше, нежели воздуха, большинства металлов. С ростом частоты необходимость в сердечнике снижается, возникают некоторые негативные эффекты, два из которых особенно важны:

Бифилярная катушка и ее использование

Линии магнитного поля, сформированные опилками

  1. Переменное магнитное поле наводит вихревые токи, посредством которых функционируют индукционные плитки. Результат представите сами: какой нагрев сердечника вызовет. Сердечники силовых трансформаторов собираются из специальной электротехнической стали с высоким сопротивлением, разбиваются тонкими листами, изолированными взаимно слоем лака. Шихтование позволит сильно снизить влияние вихревых токов.
  2. Второй эффект называется перемагничиванием. Отнимает энергию поля, вызывает нагрев материала. Явление характерно для ферромагнитных материалов, устраняется использованием латуни.

В микрополосковой технологии предусмотрено исполнение индуктивностей в виде плоских спиралей: проводящий материал через трафарет напыляется на подложку (возможный метод). Напоминает конструкцию Николы Тесла. Номинал  катушка индуктивности имеет весьма малый, иного не надо на частотах СВЧ. Расчет ведется по специальным справочникам, хотя пользуются преимущественно инженеры-конструкторы.

Для намотки индуктивности изготавливают специальные приспособления, напоминающие катушку спиннинга. На ось одевается сердечник с ограничителем по бокам, вращая ручку, мастер внимательно считает количество оборотов, отмеряет нужную длину. Медленно, по способу челнока рука двигается влево-вправо, витки ровно ложатся последовательно.

Главные катушки Тесла

Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.

  • Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
  • Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
  • Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
  • Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.

Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).

Из чего состоит катушка Тесла

Катушка Тесла состоит из:

  1. Источника питания.
  2. Конденсатора.
  3. Трансформатора.
  4. Тороида.
  5. Первичной и вторичной обмотки.
  6. Заземления.
  7. Разрядника.

Рассмотрим основные элементы:

  • Тороид. Катушка Тесла сделана в форме Тора или тороидальной фигуры. Это понятие нам известно из геометрии, где тором называется фигура, которая получается при вращении вокруг оси образующей окружности. Намного нагляднее этого определения обычный бублик или пончик, являющиеся тороидными фигурами. Для катушки тороид делается из алюминиевой гофры и выполняет функцию аккумулирования энергии. Он так же понижает резонансную частоту, формирует электростатическое поле, отталкивающее стримеры от вторичной обмотки.
  • Вторая основная составляющая – это вторичная обмотка из 800-1200 витков на трубе ПВХ. Количество витков определяет диаметр провода. Соотношение длины к диаметру составляет четыре или пять к одному. Покрытие сверху лаком убережет обмотку от расползания.
  • Первичная обмотка имеет низкое сопротивление по причине того, что по ней проходит мощный поток тока. Изготавливается она из провода с сечением более 6 мм. Форма бывает разной: конической, цилиндрической или плоской.
  • Защитное кольцо является витком плоской формы из заземленного медного провода. Оно необходимо, чтобы стример не повредил прибор, попав из тороида в первичную обмотку.
  • Заземление используется, чтобы замкнуть ток, иначе стримеры ударят в само устройство.

Принцип катушки Тесла

Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.

Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.

Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.

Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.

Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.

Вторая катушка и Cs образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.

Из чего состоит катушка Тесла

Катушка Тесла состоит из:

  1. Источника питания.
  2. Конденсатора.
  3. Трансформатора.
  4. Тороида.
  5. Первичной и вторичной обмотки.
  6. Заземления.
  7. Разрядника.

Рассмотрим основные элементы:

  • Тороид. Катушка Тесла сделана в форме Тора или тороидальной фигуры. Это понятие нам известно из геометрии, где тором называется фигура, которая получается при вращении вокруг оси образующей окружности. Намного нагляднее этого определения обычный бублик или пончик, являющиеся тороидными фигурами. Для катушки тороид делается из алюминиевой гофры и выполняет функцию аккумулирования энергии. Он так же понижает резонансную частоту, формирует электростатическое поле, отталкивающее стримеры от вторичной обмотки.
  • Вторая основная составляющая – это вторичная обмотка из 800-1200 витков на трубе ПВХ. Количество витков определяет диаметр провода. Соотношение длины к диаметру составляет четыре или пять к одному. Покрытие сверху лаком убережет обмотку от расползания.
  • Первичная обмотка имеет низкое сопротивление по причине того, что по ней проходит мощный поток тока. Изготавливается она из провода с сечением более 6 мм. Форма бывает разной: конической, цилиндрической или плоской.
  • Защитное кольцо является витком плоской формы из заземленного медного провода. Оно необходимо, чтобы стример не повредил прибор, попав из тороида в первичную обмотку.
  • Заземление используется, чтобы замкнуть ток, иначе стримеры ударят в само устройство.
Оцените статью
( Пока оценок нет )
Добавить комментарий